Roovers Martine, Oudjama Yamina, Kaminska Katarzyna H, Purta Elzbieta, Caillet Joël, Droogmans Louis, Bujnicki Janusz M
Institut de Recherches Microbiologiques Jean-Marie Wiame, B-1070 Bruxelles, Belgium.
Proteins. 2008 Jun;71(4):2076-85. doi: 10.1002/prot.21918.
MnmC catalyses the last two steps in the biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) in tRNA. Previously, we reported that this bifunctional enzyme is encoded by the yfcK open reading frame in the Escherichia coli K12 genome. However, the mechanism of its activity, in particular the potential structural and functional dependence of the domains responsible for catalyzing the two modification reactions, remains unknown. With the aid of the protein fold-recognition method, we constructed a structural model of MnmC in complex with the ligands and target nucleosides and studied the role of individual amino acids and entire domains by site-directed and deletion mutagenesis, respectively. We found out that the N-terminal domain contains residues responsible for binding of the S-adenosylmethionine cofactor and catalyzing the methylation of nm(5)s(2)U to form mnm(5)s(2)U, while the C-terminal domain contains residues responsible for binding of the FAD cofactor. Further, point mutants with compromised activity of either domain can complement each other to restore a fully functional enzyme. Thus, in the conserved fusion protein MnmC, the individual domains retain independence as enzymes. Interestingly, the N-terminal domain is capable of independent folding, while the isolated C-terminal domain is incapable of folding on its own, a situation similar to the one reported recently for the rRNA modification enzyme RsmC.
MnmC催化tRNA中5-甲基氨甲基-2-硫代尿苷(mnm(5)s(2)U)生物合成的最后两步。此前,我们报道这种双功能酶由大肠杆菌K12基因组中的yfcK开放阅读框编码。然而,其活性机制,特别是负责催化这两种修饰反应的结构域在结构和功能上的潜在依赖性,仍然未知。借助蛋白质折叠识别方法,我们构建了与配体和靶核苷复合的MnmC结构模型,并分别通过定点诱变和缺失诱变研究了单个氨基酸和整个结构域的作用。我们发现N端结构域包含负责结合S-腺苷甲硫氨酸辅因子并催化nm(5)s(2)U甲基化形成mnm(5)s(2)U的残基,而C端结构域包含负责结合FAD辅因子的残基。此外,任一结构域活性受损的点突变体可以相互补充以恢复完全功能性的酶。因此,在保守的融合蛋白MnmC中,各个结构域作为酶保留独立性。有趣的是,N端结构域能够独立折叠,而分离的C端结构域自身无法折叠,这种情况与最近报道的rRNA修饰酶RsmC类似。