Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussel, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
EMBL Hamburg outstation c/o DESY, Notkestrasse 85, Geb. 25A, 22603 Hamburg, Germany.
Nucleic Acids Res. 2014 May;42(9):5978-92. doi: 10.1093/nar/gku213. Epub 2014 Mar 14.
Transfer ribonucleic acid (tRNA) modifications, especially at the wobble position, are crucial for proper and efficient protein translation. MnmE and MnmG form a protein complex that is implicated in the carboxymethylaminomethyl modification of wobble uridine (cmnm(5)U34) of certain tRNAs. MnmE is a G protein activated by dimerization (GAD), and active guanosine-5'-triphosphate (GTP) hydrolysis is required for the tRNA modification to occur. Although crystal structures of MnmE and MnmG are available, the structure of the MnmE/MnmG complex (MnmEG) and the nature of the nucleotide-induced conformational changes and their relevance for the tRNA modification reaction remain unknown. In this study, we mainly used small-angle X-ray scattering to characterize these conformational changes in solution and to unravel the mode of interaction between MnmE, MnmG and tRNA. In the nucleotide-free state MnmE and MnmG form an unanticipated asymmetric α2β2 complex. Unexpectedly, GTP binding promotes further oligomerization of the MnmEG complex leading to an α4β2 complex. The transition from the α2β2 to the α4β2 complex is fast, reversible and coupled to GTP binding and hydrolysis. We propose a model in which the nucleotide-induced changes in conformation and oligomerization of MnmEG form an integral part of the tRNA modification reaction cycle.
转移核糖核酸(tRNA)修饰,特别是在摆动位置的修饰,对于正确和高效的蛋白质翻译至关重要。MnmE 和 MnmG 形成一个蛋白质复合物,该复合物与某些 tRNA 中摆动尿嘧啶(cmnm(5)U34)的羧甲基氨甲基修饰有关。MnmE 是一种通过二聚化(GAD)激活的 G 蛋白,并且需要活性鸟苷-5'-三磷酸(GTP)水解才能发生 tRNA 修饰。尽管已经获得了 MnmE 和 MnmG 的晶体结构,但 MnmE/MnmG 复合物(MnmEG)的结构以及核苷酸诱导的构象变化的性质及其与 tRNA 修饰反应的相关性仍然未知。在这项研究中,我们主要使用小角度 X 射线散射来描述溶液中的这些构象变化,并揭示 MnmE、MnmG 和 tRNA 之间的相互作用模式。在无核苷酸状态下,MnmE 和 MnmG 形成一种出人意料的不对称α2β2 复合物。出乎意料的是,GTP 结合促进了 MnmEG 复合物的进一步寡聚化,导致形成α4β2 复合物。从α2β2 到α4β2 复合物的转变是快速、可逆的,并与 GTP 结合和水解偶联。我们提出了一个模型,其中核苷酸诱导的 MnmEG 构象和寡聚化变化是 tRNA 修饰反应循环的一个组成部分。