Suppr超能文献

水生栖热菌蛋白 DUF752 的特性与结构:一种无需通常融合的氧化酶结构域(MnmC1)即可发挥作用的细菌 tRNA-甲基转移酶(MnmC2)。

Characterization and structure of the Aquifex aeolicus protein DUF752: a bacterial tRNA-methyltransferase (MnmC2) functioning without the usually fused oxidase domain (MnmC1).

机构信息

RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.

出版信息

J Biol Chem. 2012 Dec 21;287(52):43950-60. doi: 10.1074/jbc.M112.409300. Epub 2012 Oct 22.

Abstract

Post-transcriptional modifications of the wobble uridine (U34) of tRNAs play a critical role in reading NNA/G codons belonging to split codon boxes. In a subset of Escherichia coli tRNA, this wobble uridine is modified to 5-methylaminomethyluridine (mnm(5)U34) through sequential enzymatic reactions. Uridine 34 is first converted to 5-carboxymethylaminomethyluridine (cmnm(5)U34) by the MnmE-MnmG enzyme complex. The cmnm(5)U34 is further modified to mnm(5)U by the bifunctional MnmC protein. In the first reaction, the FAD-dependent oxidase domain (MnmC1) converts cmnm(5)U into 5-aminomethyluridine (nm(5)U34), and this reaction is immediately followed by the methylation of the free amino group into mnm(5)U34 by the S-adenosylmethionine-dependent domain (MnmC2). Aquifex aeolicus lacks a bifunctional MnmC protein fusion and instead encodes the Rossmann-fold protein DUF752, which is homologous to the methyltransferase MnmC2 domain of Escherichia coli MnmC (26% identity). Here, we determined the crystal structure of the A. aeolicus DUF752 protein at 2.5 Å resolution, which revealed that it catalyzes the S-adenosylmethionine-dependent methylation of nm(5)U in vitro, to form mnm(5)U34 in tRNA. We also showed that naturally occurring tRNA from A. aeolicus contains the 5-mnm group attached to the C5 atom of U34. Taken together, these results support the recent proposal of an alternative MnmC1-independent shortcut pathway for producing mnm(5)U34 in tRNAs.

摘要

tRNA 上的摆动尿嘧啶(U34)的转录后修饰在读取属于分裂密码子框的 NNA/G 密码子方面起着关键作用。在大肠杆菌 tRNA 的一个亚群中,通过连续的酶促反应,该摆动尿嘧啶被修饰为 5-甲氨基甲基尿嘧啶(mnm(5)U34)。尿嘧啶 34 首先被 MnmE-MnmG 酶复合物转化为 5-羧甲基氨基甲基尿嘧啶(cmnm(5)U34)。cmnm(5)U34 进一步由双功能 MnmC 蛋白修饰为 mnm(5)U。在第一个反应中,依赖 FAD 的氧化酶结构域(MnmC1)将 cmnm(5)U 转化为 5-氨基甲基尿嘧啶(nm(5)U34),该反应立即由 S-腺苷甲硫氨酸依赖的结构域(MnmC2)将游离氨基甲基化为 mnm(5)U34。水生栖热菌缺乏双功能 MnmC 蛋白融合,而是编码 Rossmann 折叠蛋白 DUF752,它与大肠杆菌 MnmC 的甲基转移酶 MnmC2 结构域同源(26%的同一性)。在这里,我们以 2.5 Å 的分辨率确定了 A.aeolicus DUF752 蛋白的晶体结构,该结构揭示了它在体外催化 S-腺苷甲硫氨酸依赖的 nm(5)U 的甲基化,在 tRNA 中形成 mnm(5)U34。我们还表明,来自 A.aeolicus 的天然 tRNA 含有附着在 U34 的 C5 原子上的 5-mnm 基团。总之,这些结果支持了最近提出的一种替代的 MnmC1 独立的捷径途径,用于在 tRNA 中产生 mnm(5)U34。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9804/3527978/ae4a1ff5f4c1/zbc0011333250001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验