Suppr超能文献

酿酒酵母中影响硫化氢形成的基因鉴定。

Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae.

作者信息

Linderholm Angela L, Findleton Carrie L, Kumar Gagandeep, Hong Yeun, Bisson Linda F

机构信息

Department of Viticulture and Enology, University of California, Davis, California 95616-8749, USA.

出版信息

Appl Environ Microbiol. 2008 Mar;74(5):1418-27. doi: 10.1128/AEM.01758-07. Epub 2008 Jan 11.

Abstract

A screen of the Saccharomyces cerevisiae deletion strain set was performed to identify genes affecting hydrogen sulfide (H(2)S) production. Mutants were screened using two assays: colony color on BiGGY agar, which detects the basal level of sulfite reductase activity, and production of H(2)S in a synthetic juice medium using lead acetate detection of free sulfide in the headspace. A total of 88 mutants produced darker colony colors than the parental strain, and 4 produced colonies significantly lighter in color. There was no correlation between the appearance of a dark colony color on BiGGY agar and H(2)S production in synthetic juice media. Sixteen null mutations were identified as leading to the production of increased levels of H(2)S in synthetic juice using the headspace analysis assay. All 16 mutants also produced H(2)S in actual juices. Five of these genes encode proteins involved in sulfur containing amino acid or precursor biosynthesis and are directly associated with the sulfate assimilation pathway. The remaining genes encode proteins involved in a variety of cellular activities, including cell membrane integrity, cell energy regulation and balance, or other metabolic functions. The levels of hydrogen sulfide production of each of the 16 strains varied in response to nutritional conditions. In most cases, creation of multiple deletions of the 16 mutations in the same strain did not lead to a further increase in H(2)S production, instead often resulting in decreased levels.

摘要

为了鉴定影响硫化氢(H₂S)产生的基因,对酿酒酵母缺失菌株集进行了筛选。使用两种检测方法筛选突变体:在BiGGY琼脂上的菌落颜色,用于检测亚硫酸盐还原酶活性的基础水平;以及在合成果汁培养基中使用醋酸铅检测顶空中游离硫化物来检测H₂S的产生。共有88个突变体产生的菌落颜色比亲本菌株更深,4个产生的菌落颜色明显更浅。在BiGGY琼脂上出现深色菌落颜色与在合成果汁培养基中产生H₂S之间没有相关性。使用顶空分析检测方法,鉴定出16个无效突变会导致在合成果汁中产生更高水平的H₂S。所有16个突变体在实际果汁中也会产生H₂S。其中5个基因编码参与含硫氨基酸或前体生物合成的蛋白质,并且与硫酸盐同化途径直接相关。其余基因编码参与多种细胞活动的蛋白质,包括细胞膜完整性、细胞能量调节和平衡或其他代谢功能。16个菌株中每个菌株的硫化氢产生水平因营养条件而异。在大多数情况下,在同一菌株中创建16个突变的多个缺失并不会导致H₂S产生进一步增加,反而常常导致水平降低。

相似文献

1
Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2008 Mar;74(5):1418-27. doi: 10.1128/AEM.01758-07. Epub 2008 Jan 11.
2
Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production.
FEMS Yeast Res. 2009 May;9(3):446-59. doi: 10.1111/j.1567-1364.2009.00489.x. Epub 2009 Feb 19.
4
MET2 affects production of hydrogen sulfide during wine fermentation.
Appl Microbiol Biotechnol. 2014 Aug;98(16):7125-35. doi: 10.1007/s00253-014-5789-1. Epub 2014 May 20.
5
Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation.
Yeast. 2021 Jun;38(6):367-381. doi: 10.1002/yea.3553. Epub 2021 Mar 1.
7
A novel mechanism regulates H(2) S and SO(2) production in Saccharomyces cerevisiae.
Yeast. 2011 Feb;28(2):109-21. doi: 10.1002/yea.1823. Epub 2010 Oct 8.
10
In situ high throughput method for H(2)S detection during micro-scale wine fermentation.
J Microbiol Methods. 2012 Oct;91(1):165-70. doi: 10.1016/j.mimet.2012.08.003. Epub 2012 Aug 14.

引用本文的文献

1
Developing a Novel and Optimized Yeast Model for Human VDAC Research.
Int J Mol Sci. 2024 Dec 3;25(23):13010. doi: 10.3390/ijms252313010.
2
Isolation of yeast from some Ethiopian traditional fermented beverages and evaluation for probiotic traits.
Heliyon. 2024 Nov 22;10(23):e40520. doi: 10.1016/j.heliyon.2024.e40520. eCollection 2024 Dec 15.
4
Effect of different nitrogen source and strain on volatile sulfur compounds and their sensory effects in chardonnay wine.
Food Chem X. 2024 Aug 31;24:101793. doi: 10.1016/j.fochx.2024.101793. eCollection 2024 Dec 30.
7
Collective production of hydrogen sulfide gas enables budding yeast lacking MET17 to overcome their metabolic defect.
PLoS Biol. 2023 Dec 7;21(12):e3002439. doi: 10.1371/journal.pbio.3002439. eCollection 2023 Dec.
8
Advances and Opportunities in HS Measurement in Chemical Biology.
JACS Au. 2023 Sep 21;3(10):2677-2691. doi: 10.1021/jacsau.3c00427. eCollection 2023 Oct 23.

本文引用的文献

1
Differentiating mechanisms of toxicity using global gene expression analysis in Saccharomyces cerevisiae.
Mutat Res. 2005 Aug 4;575(1-2):34-46. doi: 10.1016/j.mrfmmm.2005.02.005.
5
The yeast elongator histone acetylase requires Sit4-dependent dephosphorylation for toxin-target capacity.
Mol Biol Cell. 2004 Mar;15(3):1459-69. doi: 10.1091/mbc.e03-10-0750. Epub 2004 Jan 12.
7
Ser3p (Yer081wp) and Ser33p (Yil074cp) are phosphoglycerate dehydrogenases in Saccharomyces cerevisiae.
J Biol Chem. 2003 Mar 21;278(12):10264-72. doi: 10.1074/jbc.M211692200. Epub 2003 Jan 13.
8
Atp11p and Atp12p are chaperones for F(1)-ATPase biogenesis in mitochondria.
Biochim Biophys Acta. 2002 Sep 10;1555(1-3):101-5. doi: 10.1016/s0005-2728(02)00262-1.
9
The genomics of yeast responses to environmental stress and starvation.
Funct Integr Genomics. 2002 Sep;2(4-5):181-92. doi: 10.1007/s10142-002-0058-2. Epub 2002 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验