Delingette Hervé
Asclepios Team, INRIA sophia-Antipolis, Sophia-Antipolis, BP93, France.
IEEE Trans Vis Comput Graph. 2008 Mar-Apr;14(2):329-41. doi: 10.1109/TVCG.2007.70431.
This paper provides a formal connexion between springs and continuum mechanics in the context of one-dimensional and two-dimensional elasticity. In a first stage, the equivalence between tensile springs and the finite element discretization of stretching energy on planar curves is established. Furthermore, when considering a quadratic strain function of stretch, we introduce a new type of springs called tensile biquadratic springs. In a second stage, we extend this equivalence to non-linear membranes (St Venant-Kirchhoff materials) on triangular meshes leading to triangular biquadratic and quadratic springs. Those tensile and angular springs produce isotropic deformations parameterized by Young modulus and Poisson ratios on unstructured meshes in an efficient and simple way. For a specific choice of the Poisson ratio, 0.3, we show that regular spring-mass models may be used realistically to simulate a membrane behavior. Finally, the different spring formulations are tested in pure traction and cloth simulation experiments.
本文在一维和二维弹性的背景下,建立了弹簧与连续介质力学之间的形式联系。在第一阶段,建立了拉伸弹簧与平面曲线上拉伸能量的有限元离散化之间的等价关系。此外,当考虑拉伸的二次应变函数时,我们引入了一种新型弹簧,称为拉伸双二次弹簧。在第二阶段,我们将这种等价关系扩展到三角形网格上的非线性膜(圣维南 - 基尔霍夫材料),从而得到三角形双二次弹簧和二次弹簧。这些拉伸弹簧和角弹簧能够以高效且简单的方式,在非结构化网格上产生由杨氏模量和泊松比参数化的各向同性变形。对于泊松比0.3的特定选择,我们表明规则的弹簧 - 质量模型可实际用于模拟膜的行为。最后,在纯拉伸和布料模拟实验中对不同的弹簧公式进行了测试。