Department of Cardiac Surgery, Children's Hospital, Boston, MA, USA.
Ann Biomed Eng. 2011 Jun;39(6):1668-79. doi: 10.1007/s10439-011-0278-5. Epub 2011 Feb 25.
Heart valves are functionally complex, making surgical repair difficult. Simulation-based surgical planning could facilitate repair, but current finite element (FE) studies are prohibitively slow for rapid, clinically oriented simulations. Mass-spring (M-S) models are fast but can be inaccurate. We quantify speed and accuracy differences between an anisotropic, nonlinear M-S and an efficient FE membrane model for simulating both biaxial and pressure loading of aortic valve (AV) leaflets. The FE model incurs approximately 10 times the computational cost of the M-S model. For simulated biaxial loading, mean error in normal strains is <1% for both FE and M-S models for equibiaxial loading but increases for non-equibiaxial states for the M-S model (7%). The M-S model was less able to simulate shear behavior, with mean strain error of approximately 80%. For pressurized AV leaflets, the M-S model predicts similar leaflet dimensions to the FE model (within 2.6%), and the coaptation zone is similar between models. The M-S model simulates in-plane behavior of AV leaflets considerably faster than the FE model and with only minor differences in the deformed mesh. While the M-S model does not allow explicit control of shear response, shear does not strongly influence shape of the simulated AV under pressure.
心脏瓣膜的功能十分复杂,这使得瓣膜的外科修复变得困难。基于模拟的手术规划可以促进修复,但当前的有限元(FE)研究对于快速的、以临床为导向的模拟来说过于缓慢。质量-弹簧(M-S)模型速度很快,但可能不够精确。我们量化了用于模拟主动脉瓣(AV)瓣叶双轴和压力加载的各向异性非线性 M-S 模型和高效 FE 膜模型之间的速度和准确性差异。FE 模型的计算成本大约是 M-S 模型的 10 倍。对于模拟的双轴加载,FE 和 M-S 模型对于等双轴加载的正常应变的平均误差都小于 1%,但对于 M-S 模型的非等双轴状态,误差会增加(7%)。M-S 模型对于切变行为的模拟能力较差,平均应变误差约为 80%。对于加压的 AV 瓣,M-S 模型预测的瓣叶尺寸与 FE 模型相似(相差 2.6%以内),并且模型之间的贴合区相似。M-S 模型模拟 AV 瓣的面内行为比 FE 模型快得多,并且变形网格之间只有很小的差异。虽然 M-S 模型不允许对切变响应进行明确控制,但切变不会强烈影响在压力下模拟的 AV 的形状。