Suppr超能文献

用于模拟心脏瓣膜组织力学行为的质量-弹簧模型。

Mass-spring model for simulation of heart valve tissue mechanical behavior.

机构信息

Department of Cardiac Surgery, Children's Hospital, Boston, MA, USA.

出版信息

Ann Biomed Eng. 2011 Jun;39(6):1668-79. doi: 10.1007/s10439-011-0278-5. Epub 2011 Feb 25.

Abstract

Heart valves are functionally complex, making surgical repair difficult. Simulation-based surgical planning could facilitate repair, but current finite element (FE) studies are prohibitively slow for rapid, clinically oriented simulations. Mass-spring (M-S) models are fast but can be inaccurate. We quantify speed and accuracy differences between an anisotropic, nonlinear M-S and an efficient FE membrane model for simulating both biaxial and pressure loading of aortic valve (AV) leaflets. The FE model incurs approximately 10 times the computational cost of the M-S model. For simulated biaxial loading, mean error in normal strains is <1% for both FE and M-S models for equibiaxial loading but increases for non-equibiaxial states for the M-S model (7%). The M-S model was less able to simulate shear behavior, with mean strain error of approximately 80%. For pressurized AV leaflets, the M-S model predicts similar leaflet dimensions to the FE model (within 2.6%), and the coaptation zone is similar between models. The M-S model simulates in-plane behavior of AV leaflets considerably faster than the FE model and with only minor differences in the deformed mesh. While the M-S model does not allow explicit control of shear response, shear does not strongly influence shape of the simulated AV under pressure.

摘要

心脏瓣膜的功能十分复杂,这使得瓣膜的外科修复变得困难。基于模拟的手术规划可以促进修复,但当前的有限元(FE)研究对于快速的、以临床为导向的模拟来说过于缓慢。质量-弹簧(M-S)模型速度很快,但可能不够精确。我们量化了用于模拟主动脉瓣(AV)瓣叶双轴和压力加载的各向异性非线性 M-S 模型和高效 FE 膜模型之间的速度和准确性差异。FE 模型的计算成本大约是 M-S 模型的 10 倍。对于模拟的双轴加载,FE 和 M-S 模型对于等双轴加载的正常应变的平均误差都小于 1%,但对于 M-S 模型的非等双轴状态,误差会增加(7%)。M-S 模型对于切变行为的模拟能力较差,平均应变误差约为 80%。对于加压的 AV 瓣,M-S 模型预测的瓣叶尺寸与 FE 模型相似(相差 2.6%以内),并且模型之间的贴合区相似。M-S 模型模拟 AV 瓣的面内行为比 FE 模型快得多,并且变形网格之间只有很小的差异。虽然 M-S 模型不允许对切变响应进行明确控制,但切变不会强烈影响在压力下模拟的 AV 的形状。

相似文献

1
Mass-spring model for simulation of heart valve tissue mechanical behavior.
Ann Biomed Eng. 2011 Jun;39(6):1668-79. doi: 10.1007/s10439-011-0278-5. Epub 2011 Feb 25.
2
Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):171-82. doi: 10.1007/s10237-011-0301-7. Epub 2011 Mar 18.
3
Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
Cardiovasc Eng Technol. 2016 Dec;7(4):374-388. doi: 10.1007/s13239-016-0285-7. Epub 2016 Nov 14.
4
On the biaxial mechanical properties of the layers of the aortic valve leaflet.
J Biomech Eng. 2007 Oct;129(5):757-66. doi: 10.1115/1.2768111.
5
Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.
J Mech Behav Biomed Mater. 2021 Nov;123:104745. doi: 10.1016/j.jmbbm.2021.104745. Epub 2021 Aug 19.
6
Aortic valve leaflet mechanical properties facilitate diastolic valve function.
Comput Methods Biomech Biomed Engin. 2010;13(2):225-34. doi: 10.1080/10255840903120160.
7
A Neural Network Finite Element Trileaflet Heart Valve Model Incorporating Multi-Body Contact.
Int J Numer Method Biomed Eng. 2025 Apr;41(4):e70038. doi: 10.1002/cnm.70038.
8
Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):231-44. doi: 10.1007/s10237-011-0306-2. Epub 2011 Apr 5.
9
Dynamic simulation pericardial bioprosthetic heart valve function.
J Biomech Eng. 2006 Oct;128(5):717-24. doi: 10.1115/1.2244578.
10
Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.
J Biomech. 2007;40(14):3169-77. doi: 10.1016/j.jbiomech.2007.04.001. Epub 2007 Jun 13.

引用本文的文献

1
Controlled Comparison of Simulated Hemodynamics Across Tricuspid and Bicuspid Aortic Valves.
Ann Biomed Eng. 2022 Sep;50(9):1053-1072. doi: 10.1007/s10439-022-02983-4. Epub 2022 Jun 24.
2
A design-based model of the aortic valve for fluid-structure interaction.
Biomech Model Mechanobiol. 2021 Dec;20(6):2413-2435. doi: 10.1007/s10237-021-01516-7. Epub 2021 Sep 21.
3
Fast Simulation of Mitral Annuloplasty for Surgical Planning.
Funct Imaging Model Heart. 2013 Jun;7945:106-113. doi: 10.1007/978-3-642-38899-6_13.
4
Hybrid finite difference/finite element immersed boundary method.
Int J Numer Method Biomed Eng. 2017 Dec;33(12). doi: 10.1002/cnm.2888. Epub 2017 Aug 16.
5
Surgical reconstruction of semilunar valves in the growing child: Should we mimic the venous valve? A simulation study.
J Thorac Cardiovasc Surg. 2017 Feb;153(2):389-396. doi: 10.1016/j.jtcvs.2016.08.019. Epub 2016 Aug 31.
6
Surgical repair of congenital aortic regurgitation by aortic root reduction: A finite element study.
J Biomech. 2015 Nov 5;48(14):3883-9. doi: 10.1016/j.jbiomech.2015.09.030. Epub 2015 Oct 3.
7
Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics.
Comput Math Methods Med. 2015;2015:598415. doi: 10.1155/2015/598415. Epub 2015 Aug 31.
9
Straightening of curved pattern of collagen fibers under load controls aortic valve shape.
J Biomech. 2014 Jan 22;47(2):341-6. doi: 10.1016/j.jbiomech.2013.11.032. Epub 2013 Nov 28.
10
Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions.
J Biomech. 2013 Jan 18;46(2):217-28. doi: 10.1016/j.jbiomech.2012.10.026. Epub 2012 Nov 20.

本文引用的文献

1
Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data.
J Thorac Cardiovasc Surg. 2010 Oct;140(4):890-6, 896.e1-2. doi: 10.1016/j.jtcvs.2010.01.016. Epub 2010 Apr 3.
3
Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution.
Biomech Model Mechanobiol. 2009 Feb;8(1):43-55. doi: 10.1007/s10237-007-0116-8. Epub 2008 Jan 10.
4
Triangular springs for modeling nonlinear membranes.
IEEE Trans Vis Comput Graph. 2008 Mar-Apr;14(2):329-41. doi: 10.1109/TVCG.2007.70431.
5
Identification of spring parameters for deformable object simulation.
IEEE Trans Vis Comput Graph. 2007 Sep-Oct;13(5):1081-94. doi: 10.1109/TVCG.2007.1055.
6
Heart valve function: a biomechanical perspective.
Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1369-91. doi: 10.1098/rstb.2007.2122.
7
An experimentally derived stress resultant shell model for heart valve dynamic simulations.
Ann Biomed Eng. 2007 Jan;35(1):30-44. doi: 10.1007/s10439-006-9203-8. Epub 2006 Nov 2.
8
Dynamic modelling of prosthetic chorded mitral valves using the immersed boundary method.
J Biomech. 2007;40(3):613-26. doi: 10.1016/j.jbiomech.2006.01.025. Epub 2006 Apr 11.
9
The effects of cellular contraction on aortic valve leaflet flexural stiffness.
J Biomech. 2006;39(1):88-96. doi: 10.1016/j.jbiomech.2004.11.008. Epub 2005 Jan 7.
10
Structural effects of an innovative surgical technique to repair heart valve defects.
J Biomech. 2005 Dec;38(12):2460-71. doi: 10.1016/j.jbiomech.2004.10.005. Epub 2004 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验