Naret Olivier, Chaturvedi Nimisha, Bartha Istvan, Hammer Christian, Fellay Jacques
School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Swiss Institute of Bioinformatics, Lausanne, Switzerland.
Front Genet. 2018 Jul 30;9:266. doi: 10.3389/fgene.2018.00266. eCollection 2018.
Studies of host genetic determinants of pathogen sequence variations can identify sites of genomic conflicts, by highlighting variants that are implicated in immune response on the host side and adaptive escape on the pathogen side. However, systematic genetic differences in host and pathogen populations can lead to inflated type I (false positive) and type II (false negative) error rates in genome-wide association analyses. Here, we demonstrate through a simulation that correcting for both host and pathogen stratification reduces spurious signals and increases power to detect real associations in a variety of tested scenarios. We confirm the validity of the simulations by showing comparable results in an analysis of paired human and HIV genomes.
对病原体序列变异的宿主遗传决定因素进行研究,可通过突出那些在宿主方面与免疫反应以及在病原体方面与适应性逃逸有关的变异,来识别基因组冲突位点。然而,宿主和病原体群体中的系统性遗传差异可能会导致全基因组关联分析中I型(假阳性)和II型(假阴性)错误率升高。在此,我们通过模拟证明,校正宿主和病原体分层可减少虚假信号,并提高在各种测试场景中检测真实关联的能力。我们通过对配对的人类和HIV基因组进行分析,展示了可比结果来证实模拟的有效性。