Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States.
Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.
J Chem Theory Comput. 2021 Aug 10;17(8):4961-4980. doi: 10.1021/acs.jctc.1c00245. Epub 2021 Jul 20.
First-principles determination of free energy profiles for condensed-phase chemical reactions is hampered by the daunting costs associated with configurational sampling on ab initio quantum mechanical/molecular mechanical (AI/MM) potential energy surfaces. Here, we report a new method that enables efficient AI/MM free energy simulations through mean force fitting. In this method, a free energy path in collective variables (CVs) is first determined on an efficient reactive aiding potential. Based on the configurations sampled along the free energy path, correcting forces to reproduce the AI/MM forces on the CVs are determined through force matching. The AI/MM free energy profile is then predicted from simulations on the aiding potential in conjunction with the correcting forces. Such cycles of correction-prediction are repeated until convergence is established. As the instantaneous forces on the CVs sampled in equilibrium ensembles along the free energy path are fitted, this procedure faithfully restores the target free energy profile by reproducing the free energy mean forces. Due to its close connection with the reaction path-force matching (RP-FM) framework recently introduced by us, we designate the new method as RP-FM in collective variables (RP-FM-CV). We demonstrate the effectiveness of this method on a type-II solution-phase SN reaction, NH + CHCl (the Menshutkin reaction), simulated with an explicit water solvent. To obtain the AI/MM free energy profiles, we employed the semiempirical AM1/MM Hamiltonian as the base level for determining the string minimum free energy pathway, along which the free energy mean forces are fitted to various target AI/MM levels using the Hartree-Fock (HF) theory, density functional theory (DFT), and the second-order Møller-Plesset perturbation (MP2) theory as the AI method. The forces on the bond-breaking and bond-forming CVs at both the base and target levels are obtained by force transformation from Cartesian to redundant internal coordinates under the Wilson -matrix formalism, where the linearized FM is facilitated by the use of spline functions. For the Menshutkin reaction tested, our FM treatment greatly reduces the deviations on the CV forces, originally in the range of 12-33 to ∼2 kcal/mol/Å. Comparisons with the experimental and benchmark AI/MM results, tests of the new method under a variety of simulation protocols, and analyses of the solute-solvent radial distribution functions suggest that RP-FM-CV can be used as an efficient, accurate, and robust method for simulating solution-phase chemical reactions.
第一性原理方法在计算凝聚相化学反应的自由能时,由于需要对从头算量子力学/分子力学(AI/MM)势能表面进行构象采样,因此成本高昂。在此,我们报告了一种新方法,通过平均力拟合实现高效的 AI/MM 自由能模拟。在该方法中,首先在有效的反应辅助势能上确定了集体变量(CVs)中的自由能路径。基于沿着自由能路径采样的构型,通过力匹配确定校正力以再现 CVs 上的 AI/MM 力。然后,通过在辅助势能上的模拟并结合校正力来预测 AI/MM 自由能曲线。然后,通过校正-预测的循环来重复,直到建立收敛。由于在平衡系综中沿着自由能路径采样的 CVs 上的瞬时力被拟合,因此该过程通过再现自由能平均力来忠实恢复目标自由能曲线。由于它与我们最近引入的反应路径-力匹配(RP-FM)框架密切相关,因此我们将新方法指定为在集体变量中的反应路径-力匹配(RP-FM-CV)。我们通过使用显式水溶剂模拟 II 型溶液相 SN 反应,NH + CHCl(Menshutkin 反应)来证明该方法的有效性。为了获得 AI/MM 自由能曲线,我们采用半经验 AM1/MM 哈密顿量作为确定字符串最小自由能途径的基础水平,沿着该途径使用 Hartree-Fock (HF) 理论、密度泛函理论 (DFT) 和二阶 Møller-Plesset 微扰 (MP2) 理论作为 AI 方法拟合各种目标 AI/MM 水平的自由能平均力。通过在 Wilson 矩阵形式下将笛卡尔坐标转换为冗余内部坐标,从基级和目标级获得键断裂和键形成 CVs 上的力,其中通过使用样条函数来促进线性化 FM。对于测试的 Menshutkin 反应,我们的 FM 处理大大减少了 CV 力的偏差,从最初的 12-33 到 ∼2 kcal/mol/Å。与实验和基准 AI/MM 结果的比较、在各种模拟方案下的新方法的测试以及溶质-溶剂径向分布函数的分析表明,RP-FM-CV 可用于模拟溶液相化学反应的高效、准确和稳健的方法。