Travis C C
Health and Safety Research Division, Oak Ridge National Laboratory.
Ann Ist Super Sanita. 1991;27(4):581-93.
This report provides an overview of one of the fundamental problems in cancer risk assessment: extrapolation of observed experimental results between animal species and man. Lacking detailed information on interspecific differences, researchers assume that experimental results can be extrapolated between species using the first power of body weight or using surface area scaling (body weight to 2/3 power). Neither of these extrapolation procedures will be exactly correct for all compounds. However, in the absence of species-specific data, body weight or surface area extrapolations are used with the explicit knowledge that they are only approximately correct. We recommend that when a scaling metric for a specific compound is known, the scaling metric should be used in a risk assessment. When there is no prior knowledge of a chemical's pharmacokinetics or mechanism of action (the usual case in risk assessment), we recommend that the 3/4 power of body weight be used as the most appropriate interspecies scaling metric. The methods and properties used in interspecies extrapolation include allometric scaling, scaling physiological parameters (organ volumes, volume rates, partition coefficients, and biological half-life), physiological time, and physiologically-based pharmacokinetics. The extrapolation of these physiological, biochemical, and metabolic parameters across species controls interspecific extrapolation of pharmacokinetics. We analyzed clearance and half-life data for several compounds in multiple species and determined that the 3/4 power scaling law provides a more accurate estimate of a compound's true scaling metric than does the surface area scaling metric or the first power of body weight scaling metric.
在动物物种与人之间推断观察到的实验结果。由于缺乏种间差异的详细信息,研究人员假定实验结果可以通过体重的一次幂或使用表面积缩放(体重的2/3次幂)在物种间进行推断。这两种推断方法对于所有化合物都不会完全正确。然而,在缺乏物种特异性数据的情况下,使用体重或表面积推断时要明确知道它们只是大致正确。我们建议,当已知特定化合物的缩放指标时,应在风险评估中使用该缩放指标。当对一种化学物质的药代动力学或作用机制没有先验知识时(这在风险评估中是常见情况),我们建议使用体重的3/4次幂作为最合适的种间缩放指标。种间推断中使用的方法和特性包括异速生长缩放、缩放生理参数(器官体积、体积速率、分配系数和生物半衰期)、生理时间和基于生理学的药代动力学。这些生理、生化和代谢参数在物种间的推断控制着药代动力学的种间推断。我们分析了多种物种中几种化合物的清除率和半衰期数据,确定3/4次幂缩放定律比表面积缩放指标或体重缩放指标的一次幂能更准确地估计化合物的真实缩放指标。