Koeduka Takao, Louie Gordon V, Orlova Irina, Kish Christine M, Ibdah Mwafaq, Wilkerson Curtis G, Bowman Marianne E, Baiga Thomas J, Noel Joseph P, Dudareva Natalia, Pichersky Eran
Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048, USA.
Plant J. 2008 May;54(3):362-74. doi: 10.1111/j.1365-313X.2008.03412.x. Epub 2008 Jan 16.
Many plants synthesize the volatile phenylpropene compounds eugenol and isoeugenol to serve in defense against herbivores and pathogens and to attract pollinators. Clarkia breweri flowers emit a mixture of eugenol and isoeugenol, while Petunia hybrida flowers emit mostly isoeugenol with small amounts of eugenol. We recently reported the identification of a petunia enzyme, isoeugenol synthase 1 (PhIGS1) that catalyzes the formation of isoeugenol, and an Ocimum basilicum (basil) enzyme, eugenol synthase 1 (ObEGS1), that produces eugenol. ObEGS1 and PhIGS1 both utilize coniferyl acetate, are 52% sequence identical, and belong to a family of NADPH-dependent reductases involved in secondary metabolism. Here we show that C. breweri flowers have two closely related proteins (96% identity), CbIGS1 and CbEGS1, that are similar to ObEGS1 (58% and 59% identity, respectively) and catalyze the formation of isoeugenol and eugenol, respectively. In vitro mutagenesis experiments demonstrate that substitution of only a single residue can substantially affect the product specificity of these enzymes. A third C. breweri enzyme identified, CbEGS2, also catalyzes the formation of eugenol from coniferyl acetate and is only 46% identical to CbIGS1 and CbEGS1 but more similar (>70%) to other types of reductases. We also found that petunia flowers contain an enzyme, PhEGS1, that is highly similar to CbEGS2 (82% identity) and that converts coniferyl acetate to eugenol. Our results indicate that plant enzymes with EGS and IGS activities have arisen multiple times and in different protein lineages.
许多植物合成挥发性苯丙烯类化合物丁香酚和异丁香酚,用于抵御食草动物和病原体以及吸引传粉者。布鲁氏克拉克花会释放丁香酚和异丁香酚的混合物,而矮牵牛花朵主要释放异丁香酚并含有少量丁香酚。我们最近报道了一种矮牵牛酶——异丁香酚合酶1(PhIGS1),它催化异丁香酚的形成,以及一种罗勒属植物(罗勒)的酶——丁香酚合酶1(ObEGS1),它能产生丁香酚。ObEGS1和PhIGS1都利用松柏醇乙酸酯,序列同一性为52%,属于参与次生代谢的NADPH依赖性还原酶家族。在这里我们表明,布鲁氏克拉克花有两种密切相关的蛋白质(同一性为96%),CbIGS1和CbEGS1,它们分别与ObEGS1相似(分别为58%和59%同一性),并分别催化异丁香酚和丁香酚的形成。体外诱变实验表明,仅一个残基的替换就能显著影响这些酶的产物特异性。鉴定出的第三种布鲁氏克拉克花酶CbEGS2,也催化松柏醇乙酸酯形成丁香酚,与CbIGS1和CbEGS1的同一性仅为46%,但与其他类型的还原酶更相似(>70%)。我们还发现矮牵牛花朵含有一种酶PhEGS1,它与CbEGS2高度相似(同一性为82%),能将松柏醇乙酸酯转化为丁香酚。我们的结果表明,具有EGS和IGS活性的植物酶已多次出现在不同的蛋白质谱系中。