Suppr超能文献

一种多层次两部分随机效应模型及其在酒精依赖研究中的应用。

A multi-level two-part random effects model, with application to an alcohol-dependence study.

作者信息

Liu Lei, Ma Jennie Z, Johnson Bankole A

机构信息

Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908-0717, USA.

出版信息

Stat Med. 2008 Aug 15;27(18):3528-39. doi: 10.1002/sim.3205.

Abstract

Two-part random effects models (J. Am. Statist. Assoc. 2001; 96:730-745; Statist. Methods Med. Res. 2002; 11:341-355) have been applied to longitudinal studies for semi-continuous outcomes, characterized by a large portion of zero values and continuous non-zero (positive) values. Examples include repeated measures of daily drinking records, monthly medical costs, and annual claims of car insurance. However, the question of how to apply such models to multi-level data settings remains. In this paper, we propose a novel multi-level two-part random effects model. Distinct random effects are used to characterize heterogeneity at different levels. Maximum likelihood estimation and inference are carried out through Gaussian quadrature technique, which can be implemented conveniently in freely available software-aML. The model is applied to the analysis of repeated measures of the daily drinking record in a randomized controlled trial of topiramate for alcohol-dependence treatment.

摘要

两部分随机效应模型(《美国统计协会杂志》2001年;96:730 - 745;《医学研究统计方法》2002年;11:341 - 355)已应用于具有半连续结果的纵向研究,这些结果的特征是大部分为零值以及连续的非零(正值)。示例包括每日饮酒记录的重复测量、每月医疗费用以及汽车保险的年度索赔。然而,如何将此类模型应用于多层次数据设置的问题仍然存在。在本文中,我们提出了一种新颖的多层次两部分随机效应模型。不同的随机效应用于表征不同层次的异质性。通过高斯求积技术进行最大似然估计和推断,该技术可以在免费软件aML中方便地实现。该模型应用于托吡酯治疗酒精依赖的随机对照试验中每日饮酒记录的重复测量分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验