Suppr超能文献

混合建模框架分析全脑网络数据。

Mixed Modeling Frameworks for Analyzing Whole-Brain Network Data.

机构信息

Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA.

出版信息

Methods Mol Biol. 2022;2393:571-595. doi: 10.1007/978-1-0716-1803-5_30.

Abstract

Brain network analyses have exploded in recent years and hold great potential in helping us understand normal and abnormal brain function. Network science approaches have facilitated these analyses and our understanding of how the brain is structurally and functionally organized. However, the development of statistical methods that allow relating this organization to health outcomes has lagged behind. We have attempted to address this need by developing mixed modeling frameworks that allow relating system-level properties of brain networks to outcomes of interest. These frameworks serve as a synergistic fusion of multivariate statistical approaches with network science, providing a needed analytic (modeling and inferential) foundation for whole-brain network data. In this chapter we delineate these approaches that have been developed for single-task and multitask (longitudinal) brain network data, illustrate their utility with data applications, detail their implementation with a user-friendly Matlab toolbox, and discuss ongoing work to adapt the methods to (within-task) dynamic network analysis.

摘要

近年来,脑网络分析蓬勃发展,在帮助我们理解正常和异常大脑功能方面具有巨大的潜力。网络科学方法促进了这些分析和我们对大脑结构和功能组织方式的理解。然而,将这种组织与健康结果相关联的统计方法的发展却落后了。我们试图通过开发混合建模框架来解决这一需求,该框架允许将脑网络的系统级属性与感兴趣的结果相关联。这些框架是多元统计方法与网络科学的协同融合,为全脑网络数据提供了所需的分析(建模和推断)基础。在本章中,我们描述了为单任务和多任务(纵向)脑网络数据开发的这些方法,用数据应用来说明它们的实用性,详细介绍了用一个用户友好的 Matlab 工具箱来实现这些方法,并讨论了将这些方法适应(任务内)动态网络分析的正在进行的工作。

相似文献

2
Statistical Brain Network Analysis.统计脑网络分析
Annu Rev Stat Appl. 2024;11:505-531. doi: 10.1146/annurev-statistics-040522-020722. Epub 2023 Nov 27.
5
A mixed-modeling framework for whole-brain dynamic network analysis.用于全脑动态网络分析的混合建模框架。
Netw Neurosci. 2022 Jun 1;6(2):591-613. doi: 10.1162/netn_a_00238. eCollection 2022 Jun.
7
A MATLAB toolbox for multivariate analysis of brain networks.一个用于脑网络的多元分析的 MATLAB 工具箱。
Hum Brain Mapp. 2019 Jan;40(1):175-186. doi: 10.1002/hbm.24363. Epub 2018 Sep 5.
9
Brain Network Analysis: A Review on Multivariate Analytical Methods.脑网络分析:多元分析方法综述。
Brain Connect. 2023 Mar;13(2):64-79. doi: 10.1089/brain.2022.0007. Epub 2022 Oct 31.

引用本文的文献

1
Statistical Brain Network Analysis.统计脑网络分析
Annu Rev Stat Appl. 2024;11:505-531. doi: 10.1146/annurev-statistics-040522-020722. Epub 2023 Nov 27.

本文引用的文献

2
5
A MATLAB toolbox for multivariate analysis of brain networks.一个用于脑网络的多元分析的 MATLAB 工具箱。
Hum Brain Mapp. 2019 Jan;40(1):175-186. doi: 10.1002/hbm.24363. Epub 2018 Sep 5.
6
Graph theory methods: applications in brain networks.图论方法:在脑网络中的应用
Dialogues Clin Neurosci. 2018 Jun;20(2):111-121. doi: 10.31887/DCNS.2018.20.2/osporns.
7
Mapping and interpreting the dynamic connectivity of the brain.绘制并解读大脑的动态连接性。
Neuroimage. 2018 Oct 15;180(Pt B):335-336. doi: 10.1016/j.neuroimage.2018.07.018. Epub 2018 Jul 31.
8
Connectivity in fMRI: Blind Spots and Breakthroughs.功能磁共振成像中的连通性:盲点与突破。
IEEE Trans Med Imaging. 2018 Jul;37(7):1537-1550. doi: 10.1109/TMI.2018.2831261.
10
Dynamic graph metrics: Tutorial, toolbox, and tale.动态图度量:教程、工具箱和故事。
Neuroimage. 2018 Oct 15;180(Pt B):417-427. doi: 10.1016/j.neuroimage.2017.06.081. Epub 2017 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验