Suppr超能文献

统计脑网络分析

Statistical Brain Network Analysis.

作者信息

Simpson Sean L, Shappell Heather M, Bahrami Mohsen

机构信息

Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.

Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.

出版信息

Annu Rev Stat Appl. 2024;11:505-531. doi: 10.1146/annurev-statistics-040522-020722. Epub 2023 Nov 27.

Abstract

The recent fusion of network science and neuroscience has catalyzed a paradigm shift in how we study the brain and led to the field of brain network analysis. Brain network analyses hold great potential in helping us understand normal and abnormal brain function by providing profound clinical insight into links between system-level properties and health and behavioral outcomes. Nonetheless, methods for statistically analyzing networks at the group and individual levels have lagged behind. We have attempted to address this need by developing three complementary statistical frameworks-a mixed modeling framework, a distance regression framework, and a hidden semi-Markov modeling framework. These tools serve as synergistic fusions of statistical approaches with network science methods, providing needed analytic foundations for whole-brain network data. Here we delineate these approaches, briefly survey related tools, and discuss potential future avenues of research. We hope this review catalyzes further statistical interest and methodological development in the field.

摘要

网络科学与神经科学的最新融合推动了我们研究大脑方式的范式转变,并催生了脑网络分析领域。脑网络分析通过深入洞察系统层面特性与健康及行为结果之间的联系,为我们理解正常和异常脑功能具有巨大潜力。尽管如此,在群体和个体层面上对网络进行统计分析的方法却滞后了。我们试图通过开发三个互补的统计框架——混合建模框架、距离回归框架和隐半马尔可夫建模框架来满足这一需求。这些工具是统计方法与网络科学方法的协同融合,为全脑网络数据提供了必要的分析基础。在此,我们阐述这些方法,简要概述相关工具,并讨论未来潜在的研究途径。我们希望这篇综述能激发该领域更多的统计兴趣和方法学发展。

相似文献

1
Statistical Brain Network Analysis.统计脑网络分析
Annu Rev Stat Appl. 2024;11:505-531. doi: 10.1146/annurev-statistics-040522-020722. Epub 2023 Nov 27.
5
A mixed-modeling framework for whole-brain dynamic network analysis.用于全脑动态网络分析的混合建模框架。
Netw Neurosci. 2022 Jun 1;6(2):591-613. doi: 10.1162/netn_a_00238. eCollection 2022 Jun.
7
Brain Network Analysis: A Review on Multivariate Analytical Methods.脑网络分析:多元分析方法综述。
Brain Connect. 2023 Mar;13(2):64-79. doi: 10.1089/brain.2022.0007. Epub 2022 Oct 31.
9
Meta-connectomics: human brain network and connectivity meta-analyses.元连接组学:人类脑网络与连接性荟萃分析
Psychol Med. 2016 Apr;46(5):897-907. doi: 10.1017/S0033291715002895. Epub 2016 Jan 26.

引用本文的文献

本文引用的文献

1
Practical Network Modeling via Tapered Exponential-family Random Graph Models.通过渐缩指数族随机图模型进行实用网络建模
J Comput Graph Stat. 2023;32(2):388-401. doi: 10.1080/10618600.2022.2116444. Epub 2022 Oct 11.
3
Statistical Learning Methods for Neuroimaging Data Analysis with Applications.统计学习方法在神经影像学数据分析中的应用。
Annu Rev Biomed Data Sci. 2023 Aug 10;6:73-104. doi: 10.1146/annurev-biodatasci-020722-100353. Epub 2023 Apr 26.
4
A mixed-modeling framework for whole-brain dynamic network analysis.用于全脑动态网络分析的混合建模框架。
Netw Neurosci. 2022 Jun 1;6(2):591-613. doi: 10.1162/netn_a_00238. eCollection 2022 Jun.
7
A regression framework for brain network distance metrics.用于脑网络距离度量的回归框架。
Netw Neurosci. 2022 Feb 1;6(1):49-68. doi: 10.1162/netn_a_00214. eCollection 2022 Feb.
9
The default mode network in cognition: a topographical perspective.认知中的默认模式网络:一种地形学视角。
Nat Rev Neurosci. 2021 Aug;22(8):503-513. doi: 10.1038/s41583-021-00474-4. Epub 2021 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验