Simpson Sean L, Shappell Heather M, Bahrami Mohsen
Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Annu Rev Stat Appl. 2024;11:505-531. doi: 10.1146/annurev-statistics-040522-020722. Epub 2023 Nov 27.
The recent fusion of network science and neuroscience has catalyzed a paradigm shift in how we study the brain and led to the field of brain network analysis. Brain network analyses hold great potential in helping us understand normal and abnormal brain function by providing profound clinical insight into links between system-level properties and health and behavioral outcomes. Nonetheless, methods for statistically analyzing networks at the group and individual levels have lagged behind. We have attempted to address this need by developing three complementary statistical frameworks-a mixed modeling framework, a distance regression framework, and a hidden semi-Markov modeling framework. These tools serve as synergistic fusions of statistical approaches with network science methods, providing needed analytic foundations for whole-brain network data. Here we delineate these approaches, briefly survey related tools, and discuss potential future avenues of research. We hope this review catalyzes further statistical interest and methodological development in the field.
网络科学与神经科学的最新融合推动了我们研究大脑方式的范式转变,并催生了脑网络分析领域。脑网络分析通过深入洞察系统层面特性与健康及行为结果之间的联系,为我们理解正常和异常脑功能具有巨大潜力。尽管如此,在群体和个体层面上对网络进行统计分析的方法却滞后了。我们试图通过开发三个互补的统计框架——混合建模框架、距离回归框架和隐半马尔可夫建模框架来满足这一需求。这些工具是统计方法与网络科学方法的协同融合,为全脑网络数据提供了必要的分析基础。在此,我们阐述这些方法,简要概述相关工具,并讨论未来潜在的研究途径。我们希望这篇综述能激发该领域更多的统计兴趣和方法学发展。