Suppr超能文献

通过多层次两部分建模研究日常生活中的饮食摄入:一种新颖的分析方法及其实际应用。

Studying dietary intake in daily life through multilevel two-part modelling: a novel analytical approach and its practical application.

机构信息

Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany.

DIPF | Leibniz Institute for Research and Information in Education, Frankfurt am Main, Germany.

出版信息

Int J Behav Nutr Phys Act. 2021 Sep 27;18(1):130. doi: 10.1186/s12966-021-01187-8.

Abstract

BACKGROUND

Understanding which factors influence dietary intake, particularly in daily life, is crucial given the impact diet has on physical as well as mental health. However, a factor might influence whether but not how much an individual eats and vice versa or a factor's importance may differ across these two facets. Distinguishing between these two facets, hence, studying dietary intake as a dual process is conceptually promising and not only allows further insights, but also solves a statistical issue. When assessing the association between a predictor (e.g. momentary affect) and subsequent dietary intake in daily life through ecological momentary assessment (EMA), the outcome variable (e.g. energy intake within a predefined time-interval) is semicontinuous. That is, one part is equal to zero (i.e. no dietary intake occurred) and the other contains right-skewed positive values (i.e. dietary intake occurred, but often only small amounts are consumed). However, linear multilevel modelling which is commonly used for EMA data to account for repeated measures within individuals cannot be applied to semicontinuous outcomes. A highly informative statistical approach for semicontinuous outcomes is multilevel two-part modelling which treats the outcome as generated by a dual process, combining a multilevel logistic/probit regression for zeros and a multilevel (generalized) linear regression for nonzero values.

METHODS

A multilevel two-part model combining a multilevel logistic regression to predict whether an individual eats and a multilevel gamma regression to predict how much is eaten, if an individual eats, is proposed. Its general implementation in R, a widely used and freely available statistical software, using the R-package brms is described. To illustrate its practical application, the analytical approach is applied exemplary to data from the Eat2beNICE-APPetite-study.

RESULTS

Results highlight that the proposed multilevel two-part model reveals process-specific associations which cannot be detected through traditional multilevel modelling.

CONCLUSIONS

This paper is the first to introduce multilevel two-part modelling as a novel analytical approach to study dietary intake in daily life. Studying dietary intake through multilevel two-part modelling is conceptually as well as methodologically promising. Findings can be translated to tailored nutritional interventions targeting either the occurrence or the amount of dietary intake.

摘要

背景

鉴于饮食对身心健康的影响,了解哪些因素会影响饮食摄入,尤其是在日常生活中,这一点至关重要。然而,一个因素可能会影响个体的饮食量,而另一个因素则可能会影响个体的饮食量,反之亦然,或者一个因素的重要性可能在这两个方面有所不同。因此,将饮食摄入视为一个双重过程进行区分,在概念上是有希望的,不仅可以提供更深入的见解,还可以解决一个统计问题。当通过生态瞬时评估(EMA)评估预测因子(例如瞬时情感)与日常生活中随后的饮食摄入之间的关联时,因变量(例如在预定义时间间隔内的能量摄入)是半连续的。也就是说,一部分等于零(即没有发生饮食摄入),另一部分包含右偏的正数值(即发生了饮食摄入,但通常只摄入了少量)。然而,线性多层建模通常用于 EMA 数据,以解释个体内的重复测量,不能应用于半连续结果。一种针对半连续结果的高度信息丰富的统计方法是多层两部分模型,它将结果视为由双重过程产生的,将多层逻辑/概率回归用于零值和多层(广义)线性回归用于非零值。

方法

提出了一种结合多层逻辑回归来预测个体是否进食的多层两部分模型,以及一种结合多层伽马回归来预测个体进食时进食量的多层两部分模型。描述了它在广泛使用且免费提供的统计软件 R 中的一般实现,使用 R 包 brms。为了说明其实用应用,该分析方法被示例性地应用于来自 Eat2beNICE-APPetite-study 的数据。

结果

结果强调,所提出的多层两部分模型揭示了无法通过传统多层建模检测到的特定过程的关联。

结论

本文首次将多层两部分模型引入日常生活中的饮食摄入研究,作为一种新的分析方法。通过多层两部分模型研究饮食摄入在概念上和方法上都是有希望的。研究结果可以转化为针对饮食摄入发生或量的定制营养干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验