Heckemann Rolf A, Hajnal Joseph V, Aljabar Paul, Rueckert Daniel, Hammers Alexander
Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College at Hammersmith Hospital Campus, Du Cane Road, London W12 0HS, UK.
Neuroimage. 2006 Oct 15;33(1):115-26. doi: 10.1016/j.neuroimage.2006.05.061. Epub 2006 Jul 24.
Regions in three-dimensional magnetic resonance (MR) brain images can be classified using protocols for manually segmenting and labeling structures. For large cohorts, time and expertise requirements make this approach impractical. To achieve automation, an individual segmentation can be propagated to another individual using an anatomical correspondence estimate relating the atlas image to the target image. The accuracy of the resulting target labeling has been limited but can potentially be improved by combining multiple segmentations using decision fusion. We studied segmentation propagation and decision fusion on 30 normal brain MR images, which had been manually segmented into 67 structures. Correspondence estimates were established by nonrigid registration using free-form deformations. Both direct label propagation and an indirect approach were tested. Individual propagations showed an average similarity index (SI) of 0.754+/-0.016 against manual segmentations. Decision fusion using 29 input segmentations increased SI to 0.836+/-0.009. For indirect propagation of a single source via 27 intermediate images, SI was 0.779+/-0.013. We also studied the effect of the decision fusion procedure using a numerical simulation with synthetic input data. The results helped to formulate a model that predicts the quality improvement of fused brain segmentations based on the number of individual propagated segmentations combined. We demonstrate a practicable procedure that exceeds the accuracy of previous automatic methods and can compete with manual delineations.
三维磁共振(MR)脑图像中的区域可通过手动分割和标记结构的方案进行分类。对于大型队列而言,时间和专业知识要求使得这种方法不切实际。为实现自动化,可利用将图谱图像与目标图像相关联的解剖对应估计,将个体分割结果传播到另一个体。所得目标标记的准确性一直有限,但通过使用决策融合合并多个分割结果可能会得到改善。我们在30幅正常脑MR图像上研究了分割传播和决策融合,这些图像已被手动分割为67个结构。通过使用自由形式变形的非刚性配准建立对应估计。测试了直接标签传播和间接方法。个体传播与手动分割相比,平均相似性指数(SI)为0.754±0.016。使用29个输入分割的决策融合将SI提高到0.836±0.009。对于通过27个中间图像对单个源进行间接传播,SI为0.779±0.013。我们还使用合成输入数据的数值模拟研究了决策融合过程的效果。结果有助于制定一个模型,该模型可根据合并的个体传播分割的数量预测融合脑分割的质量改善情况。我们展示了一种切实可行的方法,其准确性超过了以前的自动方法,并且可以与手动描绘相媲美。