Suppr超能文献

生物制药色谱分析中线性的校准与验证

Calibration and validation of linearity in chromatographic biopharmaceutical analysis.

作者信息

Karnes H T, March C

机构信息

Virginia Commonwealth University, School of Pharmacy, Richmond 23298-0533.

出版信息

J Pharm Biomed Anal. 1991;9(10-12):911-8. doi: 10.1016/0731-7085(91)80022-2.

Abstract

Calibration in chromatographic biopharmaceutical analysis is a major determinate of method performance and many methods have been proposed to evaluate an appropriate calibration model, to determine the linear range and to evaluate the goodness of fit. Ten chromatographic bioanalytical methods have been evaluated in this work by observation of concentration-response curves, linearity plots, calculation of concentration residuals, correlation coefficients and lack of fit analysis. These methods were applied to univariant linear regression, weighted regression, polynomial regression and power fit models in order to determine the most appropriate way to establish and evaluate calibration functions. It was found that weighted linear regression provided the most appropriate calibration function for eight of the 10 methods studied, whereas unweighted regression and the power fit model proved appropriate for one each of the other two methods. The choice of calibration function was best accomplished through observation of calculated concentration residuals. Linearity and sensitivity plots were of little value for assessment of linearity through the selected calibration range if conventional (+/- 5%) tolerance limits are employed. Validation of the calibration model can be accomplished by demonstrating the concentration residuals and the slope of the log concentration-log response plots are within reasonable tolerance limits or by lack of fit analysis. Correlation coefficients were demonstrated to be of little value for this purpose and the quadratic approach to linearity validation was in disagreement with other methods in four of the 10 methods evaluated.

摘要

色谱生物制药分析中的校准是方法性能的主要决定因素,人们已经提出了许多方法来评估合适的校准模型、确定线性范围并评估拟合优度。在这项工作中,通过观察浓度-响应曲线、线性图、计算浓度残差、相关系数和失拟分析,对10种色谱生物分析方法进行了评估。这些方法应用于单变量线性回归、加权回归、多项式回归和幂拟合模型,以确定建立和评估校准函数的最合适方法。结果发现,加权线性回归为所研究的10种方法中的8种提供了最合适的校准函数,而未加权回归和幂拟合模型则分别适用于另外两种方法中的一种。校准函数的选择最好通过观察计算出的浓度残差来完成。如果采用传统的(±5%)公差限,线性和灵敏度图对于评估所选校准范围内的线性几乎没有价值。校准模型的验证可以通过证明浓度残差和对数浓度-对数响应图的斜率在合理的公差限内或通过失拟分析来完成。结果表明,相关系数在此目的上几乎没有价值,并且在评估的10种方法中的4种中,线性验证的二次方法与其他方法不一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验