Suppr超能文献

使用基于机制现实和生理学的模型预测肝脏处置特性。

Predictions of hepatic disposition properties using a mechanistically realistic, physiologically based model.

作者信息

Yan Li, Sheihk-Bahaei Shahab, Park Sunwoo, Ropella Glen E P, Hunt C Anthony

机构信息

The UCSF/UCB Joint Graduate Group in Bioengineering, University of California, Berkeley and San Francisco, California, USA.

出版信息

Drug Metab Dispos. 2008 Apr;36(4):759-68. doi: 10.1124/dmd.107.019067. Epub 2008 Jan 28.

Abstract

Quantitative mappings were established between drug physicochemical properties (PCPs) and parameter values of a physiologically based, mechanistically realistic, in silico liver (ISL). The ISL plugs together autonomous software objects that represent hepatic components at different scales and levels of detail. Microarchitectural features are represented separately from the mechanisms that influence drug metabolism. The same ISL has been validated against liver perfusion data for sucrose and four cationic drugs: antipyrine, atenolol, labetalol, and diltiazem. Parameters sensitive to drug-specific PCPs were tuned so that ISL outflow profiles from a single ISL matched in situ perfused rat liver outflow profiles of all five compounds. Quantitative relationships were then established between the four sets of drug PCPs and the corresponding four sets of PCP-sensitive, ISL parameter values; those relationships were used to predict PCP-sensitive, ISL parameter values for prazosin and propranolol given only their PCPs. Relationships were established using three different methods: 1) a simple linear correlation method, 2) the fuzzy c-means algorithm, and 3) a simple artificial neural network. Each relationship was used separately to predict ISL parameter values for prazosin and propranolol, given their PCPs. Those values were applied in the ISL used earlier to predict the hepatic disposition details for each drug. Although we had only sparse data available, all predicted disposition profiles were judged reasonable (within a factor of 2 of referent profile data). The order of precision, based on a similarity measure, was 3 > 2 > 1.

摘要

在药物理化性质(PCP)与基于生理学、具有机制真实性的计算机虚拟肝脏(ISL)的参数值之间建立了定量映射关系。该ISL将代表不同尺度和详细程度肝脏组分的自主软件对象整合在一起。微观结构特征与影响药物代谢的机制分开表示。同一ISL已针对蔗糖以及四种阳离子药物(安替比林、阿替洛尔、拉贝洛尔和地尔硫䓬)的肝脏灌注数据进行了验证。对药物特异性PCP敏感的参数进行了调整,以使单个ISL的流出曲线与原位灌注大鼠肝脏中所有五种化合物的流出曲线相匹配。然后在四组药物PCP与相应的四组对PCP敏感的ISL参数值之间建立了定量关系;利用这些关系仅根据哌唑嗪和普萘洛尔的PCP来预测其对PCP敏感的ISL参数值。使用三种不同方法建立了这些关系:1)简单线性相关法,2)模糊c均值算法,3)简单人工神经网络。分别利用每种关系根据哌唑嗪和普萘洛尔的PCP来预测其ISL参数值。将这些值应用于之前使用的ISL中,以预测每种药物的肝脏处置细节。尽管我们仅有稀疏的数据,但所有预测的处置曲线都被判定为合理(在参考曲线数据的2倍范围内)。基于相似性度量的精度顺序为3 > 2 > 1。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验