Suppr超能文献

用于高内涵RNA干扰全基因组筛选的细胞表型识别

Cellular phenotype recognition for high-content RNA interference genome-wide screening.

作者信息

Wang Jun, Zhou Xiaobo, Bradley Pamela L, Chang Shih-Fu, Perrimon Norbert, Wong Stephen T C

机构信息

Center for Bioinformatics, Harvard Center for Neurodegeneration and Repair, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Biomol Screen. 2008 Jan;13(1):29-39. doi: 10.1177/1087057107311223.

Abstract

Genome-wide, cell-based screens using high-content screening (HCS) techniques and automated fluorescence microscopy generate thousands of high-content images that contain an enormous wealth of cell biological information. Such screens are key to the analysis of basic cell biological principles, such as control of cell cycle and cell morphology. However, these screens will ultimately only shed light on human disease mechanisms and potential cures if the analysis can keep up with the generation of data. A fundamental step toward automated analysis of high-content screening is to construct a robust platform for automatic cellular phenotype identification. The authors present a framework, consisting of microscopic image segmentation and analysis components, for automatic recognition of cellular phenotypes in the context of the Rho family of small GTPases. To implicate genes involved in Rac signaling, RNA interference (RNAi) was used to perturb gene functions, and the corresponding cellular phenotypes were analyzed for changes. The data used in the experiments are high-content, 3-channel, fluorescence microscopy images of Drosophila Kc167 cultured cells stained with markers that allow visualization of DNA, polymerized actin filaments, and the constitutively activated Rho protein Rac(V12). The performance of this approach was tested using a cellular database that contained more than 1000 samples of 3 predefined cellular phenotypes, and the generalization error was estimated using a cross-validation technique. Moreover, the authors applied this approach to analyze the whole high-content fluorescence images of Drosophila cells for further HCS-based gene function analysis.

摘要

使用高内涵筛选(HCS)技术和自动荧光显微镜进行全基因组细胞筛选,可生成数千张包含大量细胞生物学信息的高内涵图像。此类筛选对于分析基本细胞生物学原理(如细胞周期控制和细胞形态)至关重要。然而,只有当分析能够跟上数据的生成速度时,这些筛选最终才能揭示人类疾病机制和潜在的治疗方法。实现高内涵筛选自动分析的一个基本步骤是构建一个强大的自动细胞表型识别平台。作者提出了一个由微观图像分割和分析组件组成的框架,用于在小GTP酶Rho家族的背景下自动识别细胞表型。为了找出参与Rac信号传导的基因,使用RNA干扰(RNAi)来干扰基因功能,并分析相应细胞表型的变化。实验中使用的数据是果蝇Kc167培养细胞的高内涵、三通道荧光显微镜图像,这些细胞用能够使DNA、聚合肌动蛋白丝和组成型激活的Rho蛋白Rac(V12)可视化的标记物进行染色。使用一个包含1000多个3种预定义细胞表型样本的细胞数据库对该方法的性能进行了测试,并使用交叉验证技术估计泛化误差。此外,作者应用此方法分析果蝇细胞的全高内涵荧光图像,以进行基于HCS的进一步基因功能分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验