Suppr超能文献

一种具有评分和分类混合模型的自动反馈系统,用于解决RNA干扰高内涵筛选中的过分割问题。

An automated feedback system with the hybrid model of scoring and classification for solving over-segmentation problems in RNAi high content screening.

作者信息

Li F, Zhou X, Ma J, Wong Stephen T C

机构信息

Center for Bioinformatics, Harvard Center for Neurodegeneration and Repair, Harvard Medical School, Boston, MA 02115, USA.

出版信息

J Microsc. 2007 May;226(Pt 2):121-32. doi: 10.1111/j.1365-2818.2007.01762.x.

Abstract

BACKGROUND

High content screening (HCS) via automated fluorescence microscopy is a powerful technology for generating cellular images that are rich in phenotypic information. RNA interference is a revolutionary approach for silencing gene expression and has become an important method for studying genes through RNA interference-induced cellular phenotype analysis. The convergence of the two technologies has led to large-scale, image-based studies of cellular phenotypes under systematic perturbations of RNA interference. However, existing high content screening image analysis tools are inadequate to extract content regarding cell morphology from the complex images, thus they limit the potential of genome-wide RNA interference high content screening screening for simple marker readouts. In particular, over-segmentation is one of the persistent problems of cell segmentation; this paper describes a new method to alleviate this problem.

METHODS

To solve the issue of over-segmentation, we propose a novel feedback system with a hybrid model for automated cell segmentation of images from high content screening. A Hybrid learning model is developed based on three scoring models to capture specific characteristics of over-segmented cells. Dead nuclei are also removed through a statistical model.

RESULTS

Experimental validation showed that the proposed method had 93.7% sensitivity and 94.23% specificity. When applied to a set of images of F-actin-stained Drosophila cells, 91.3% of over-segmented cells were detected and only 2.8% were under-segmented.

CONCLUSIONS

The proposed feedback system significantly reduces over-segmentation of cell bodies caused by over-segmented nuclei, dead nuclei, and dividing cells. This system can be used in the automated analysis system of high content screening images.

摘要

背景

通过自动荧光显微镜进行的高内涵筛选(HCS)是一种强大的技术,可生成富含表型信息的细胞图像。RNA干扰是一种用于沉默基因表达的革命性方法,并且已成为通过RNA干扰诱导的细胞表型分析来研究基因的重要方法。这两种技术的融合导致了在RNA干扰的系统性扰动下对细胞表型进行大规模的基于图像的研究。然而,现有的高内涵筛选图像分析工具不足以从复杂图像中提取有关细胞形态的内容,因此它们限制了全基因组RNA干扰高内涵筛选用于简单标记读数的潜力。特别是,过度分割是细胞分割中一直存在的问题之一;本文描述了一种缓解此问题的新方法。

方法

为了解决过度分割问题,我们提出了一种新颖的反馈系统,该系统具有用于高内涵筛选图像的自动细胞分割的混合模型。基于三种评分模型开发了一种混合学习模型,以捕获过度分割细胞的特定特征。还通过统计模型去除死核。

结果

实验验证表明,所提出的方法具有93.7%的灵敏度和94.23%的特异性。当应用于一组F-肌动蛋白染色的果蝇细胞图像时,检测到91.3%的过度分割细胞,只有2.8%的细胞分割不足。

结论

所提出的反馈系统显著减少了由过度分割的细胞核、死核和分裂细胞引起的细胞体过度分割。该系统可用于高内涵筛选图像的自动分析系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验