Suppr超能文献

基于单细胞的高通量细胞阵列筛选图像分析用于病毒感染定量

Single-cell-based image analysis of high-throughput cell array screens for quantification of viral infection.

作者信息

Matula Petr, Kumar Anil, Wörz Ilka, Erfle Holger, Bartenschlager Ralf, Eils Roland, Rohr Karl

机构信息

University of Heidelberg, Department of Bioinformatics and Functional Genomics, BIOQUANT, IPMB, Heidelberg, Germany.

出版信息

Cytometry A. 2009 Apr;75(4):309-18. doi: 10.1002/cyto.a.20662.

Abstract

The identification of eukaryotic genes involved in virus entry and replication is important for understanding viral infection. Our goal is to develop a siRNA-based screening system using cell arrays and high-throughput (HT) fluorescence microscopy. A central issue is efficient, robust, and automated single-cell-based analysis of massive image datasets. We have developed an image analysis approach that comprises (i) a novel, gradient-based thresholding scheme for cell nuclei segmentation which does not require subsequent postprocessing steps for separation of clustered nuclei, (ii) quantification of the virus signal in the neighborhood of cell nuclei, (iii) localization of regions with transfected cells by combining model-based circle fitting and grid fitting, (iv) cell classification as infected or noninfected, and (v) image quality control (e.g., identification of out-of-focus images). We compared the results of our nucleus segmentation approach with a previously developed scheme of adaptive thresholding with subsequent separation of nuclear clusters. Our approach, which does not require a postprocessing step for the separation of nuclear clusters, correctly segmented 97.1% of the nuclei, whereas the previous scheme achieved 95.8%. Using our algorithm for the detection of out-of-focus images, we obtained a high discrimination power of 99.4%. Our overall approach has been applied to more than 55,000 images of cells infected by either hepatitis C or dengue virus. Reduced infection rates were correctly detected in positive siRNA controls, as well as for siRNAs targeting, for example, cellular genes involved in viral infection. Our image analysis approach allows for the automatic and accurate determination of changes in viral infection based on high-throughput single-cell-based siRNA cell array imaging experiments.

摘要

鉴定参与病毒进入和复制的真核基因对于理解病毒感染至关重要。我们的目标是开发一种基于小干扰RNA(siRNA)的筛选系统,该系统使用细胞阵列和高通量(HT)荧光显微镜。一个核心问题是对海量图像数据集进行高效、稳健且自动化的单细胞分析。我们开发了一种图像分析方法,该方法包括:(i)一种新颖的基于梯度的阈值化方案,用于细胞核分割,该方案无需后续处理步骤来分离聚集的细胞核;(ii)量化细胞核附近的病毒信号;(iii)通过结合基于模型的圆形拟合和网格拟合来定位转染细胞的区域;(iv)将细胞分类为感染或未感染;以及(v)图像质量控制(例如,识别失焦图像)。我们将细胞核分割方法的结果与先前开发的自适应阈值化方案以及随后的核簇分离方案进行了比较。我们的方法无需对核簇进行后续处理步骤,正确分割了97.1%的细胞核,而先前的方案达到了95.8%。使用我们检测失焦图像的算法,我们获得了99.4%的高辨别力。我们的整体方法已应用于超过55,000张感染丙型肝炎或登革热病毒的细胞图像。在阳性siRNA对照以及针对例如参与病毒感染的细胞基因的siRNA中,正确检测到了感染率的降低。我们的图像分析方法能够基于高通量单细胞siRNA细胞阵列成像实验自动准确地确定病毒感染的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验