Guillaud François, Hannaert Patrick
Inserm E0324, CHU La Milétrie, 2 rue de la Milétrie, BP 577, 86000, Poitiers, France.
Acta Biotheor. 2008 Jun;56(1-2):157-72. doi: 10.1007/s10441-008-9035-z. Epub 2008 Jan 30.
Hypoxia hampers ATP production and threatens cell survival. Since cellular energetics tightly controls cell responses and fate, ATP levels and dynamics are of utmost importance. An integrated mathematical model of ATP synthesis by the mitochondrial oxidative phosphorylation/electron transfer chain system has been recently published (Beard, PLoS Comput Biol 1(4):e36, 2005). This model was validated under static conditions. To evaluate its performance under dynamical situations, we implemented and simulated it (Simulink), The Mathworks). Inner membrane potential (DeltaPsi) and [NADH] (feeding the electron transfer chain) were used as indicators of mitochondrial function. Root mean squared error (rmse) was used to compare simulations and experiments (isolated cardiac mitochondria, Bose et al. J Biol Chem 278(40):39155-39165, 2003). Steady-state experimental data were reproduced within 2-6%. Model dynamics were evaluated under: (i) baseline, (ii) activation of NADH production, (iii) addition of ADP, (iv) addition of inorganic phosphate, (v) oxygen exhaustion. In all phases, except the last one, DeltaPsi and [NADH] as well as oxygen consumption, were reproduced (within 10, 7 and 12%, respectively). Under anoxia, simulated DeltaPsi markedly depolarized (no change in experiments). In conclusion, the model reproduces dynamic data as long as oxygen is present. Anticipated improvement by the inclusion of ATP consumption and explicit Krebs cycle are under evaluation.
缺氧会阻碍ATP的产生并威胁细胞存活。由于细胞能量代谢严格控制着细胞反应和命运,因此ATP水平及其动态变化至关重要。最近发表了一个关于线粒体氧化磷酸化/电子传递链系统合成ATP的综合数学模型(Beard,《公共科学图书馆·计算生物学》1(4):e36,2005年)。该模型在静态条件下得到了验证。为了评估其在动态情况下的性能,我们对其进行了实现和模拟(使用Simulink,The Mathworks公司)。内膜电位(ΔΨ)和[NADH](为电子传递链提供物质)被用作线粒体功能的指标。均方根误差(rmse)用于比较模拟结果和实验数据(分离的心脏线粒体,Bose等人,《生物化学杂志》278(40):39155 - 39165,2003年)。稳态实验数据的重现误差在2 - 6%以内。在以下情况下评估了模型动态:(i)基线状态,(ii)NADH产生的激活,(iii)添加ADP,(iv)添加无机磷酸盐,(v)氧气耗尽。在除最后一个阶段之外的所有阶段,ΔΨ、[NADH]以及氧气消耗均得到了重现(分别在10%、7%和12%以内)。在缺氧情况下,模拟的ΔΨ明显去极化(实验中无变化)。总之,只要有氧气存在,该模型就能重现动态数据。通过纳入ATP消耗和明确的克雷布斯循环来预期的改进正在评估中。