Lebedev V V, Turitsyn K S, Vergeles S S
Landau Institute for Theoretical Physics, Moscow, Kosygina 2, 119334, Russia.
Phys Rev Lett. 2007 Nov 23;99(21):218101. doi: 10.1103/PhysRevLett.99.218101. Epub 2007 Nov 20.
Tank-treading, tumbling, and trembling are different types of the vesicle behavior in an external flow. We derive a dynamical equation enabling us to establish a state of nearly spherical vesicles. For a 2D external flow, the character of the vesicle dynamics is determined by two dimensionless parameters, depending on the vesicle excess area, fluid viscosities, membrane viscosity and bending modulus, strength of the flow, and ratio of the elongational and rotational components of the flow. The tank-treading to tumbling transition occurs via a saddle-node bifurcation, whereas the tank-treading to trembling transition occurs via a Hopf bifurcation. A slowdown of vesicle dynamics should be observed in a vicinity of a point separating the transition lines. We show that the slowdown can be described by a power law with two different critical exponents 1/4 and 1/2 corresponding to the slowdown of tumbling and trembling cycles.
坦克履带式运动、翻滚和颤动是外部流中囊泡行为的不同类型。我们推导了一个动力学方程,使我们能够建立近球形囊泡的状态。对于二维外部流,囊泡动力学的特征由两个无量纲参数决定,这两个参数取决于囊泡的过剩面积、流体粘度、膜粘度和弯曲模量、流的强度以及流的伸长和旋转分量的比率。坦克履带式运动到翻滚的转变通过鞍结分岔发生,而坦克履带式运动到颤动的转变通过霍普夫分岔发生。在分隔转变线的点附近应观察到囊泡动力学的减慢。我们表明,这种减慢可以用幂律来描述,其中两个不同的临界指数1/4和1/2分别对应于翻滚和颤动周期的减慢。