Prado Gaël, Farutin Alexander, Misbah Chaouqi, Bureau Lionel
Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique, Grenoble, France; Laboratoire Interdisciplinaire de Physique, University Grenoble Alpes, Grenoble, France.
Laboratoire Interdisciplinaire de Physique, Centre National de la Recherche Scientifique, Grenoble, France; Laboratoire Interdisciplinaire de Physique, University Grenoble Alpes, Grenoble, France; Experimental Physics, Saarland University, Saarbrücken, Germany.
Biophys J. 2015 May 5;108(9):2126-36. doi: 10.1016/j.bpj.2015.03.046.
The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, η(mem)(2D) ∼ 10(-7) N ⋅ s ⋅ m(-1). By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of η(mem)(2D), and reconcile seemingly conflicting conclusions from previous works.
红细胞能够流经极其微小的微毛细血管,其独特能力取决于细胞膜的粘弹性特性。在此,我们在体外研究了被限制在微通道中的红细胞在流动启动时的响应时间。我们表明,特征瞬态时间取决于所施加的流动强度,并且这种依赖性使我们能够获取控制红细胞时间响应的有效粘度和弹性模量。通过数值模拟验证的对我们实验数据的简单理论分析,进一步使我们能够计算出红细胞二维膜粘度的估计值,η(mem)(2D) ∼ 10(-7) N ⋅ s ⋅ m(-1)。通过将我们的结果与先前研究的结果进行比较,我们讨论并阐明了文献中在确定η(mem)(2D)时发现的差异的根源,并调和了先前工作中看似相互矛盾的结论。