Suppr超能文献

具有局部动态平衡可塑性的网络中的渗流。

Percolation in networks with local homeostatic plasticity.

机构信息

Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, E-43007, Tarragona, Spain.

Barcelona Supercomputing Center (BSC), Barcelona, Spain.

出版信息

Nat Commun. 2022 Jan 10;13(1):122. doi: 10.1038/s41467-021-27736-0.

Abstract

Percolation is a process that impairs network connectedness by deactivating links or nodes. This process features a phase transition that resembles paradigmatic critical transitions in epidemic spreading, biological networks, traffic and transportation systems. Some biological systems, such as networks of neural cells, actively respond to percolation-like damage, which enables these structures to maintain their function after degradation and aging. Here we study percolation in networks that actively respond to link damage by adopting a mechanism resembling synaptic scaling in neurons. We explain critical transitions in such active networks and show that these structures are more resilient to damage as they are able to maintain a stronger connectedness and ability to spread information. Moreover, we uncover the role of local rescaling strategies in biological networks and indicate a possibility of designing smart infrastructures with improved robustness to perturbations.

摘要

渗流是一种通过使链路或节点失活来损害网络连通性的过程。这个过程具有类似于流行病传播、生物网络、交通和运输系统中典范临界转变的相变。一些生物系统,如神经网络,会主动响应类似渗流的损伤,这使这些结构在退化和老化后仍能保持其功能。在这里,我们研究了通过类似于神经元突触缩放的机制对链路损伤做出主动响应的网络中的渗流。我们解释了这种主动网络中的临界转变,并表明这些结构对损伤更具弹性,因为它们能够保持更强的连通性和传播信息的能力。此外,我们揭示了局部缩放策略在生物网络中的作用,并指出了设计具有改进抗扰性的智能基础设施的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00ae/8748765/8e2985351aa2/41467_2021_27736_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验