Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA.
Phys Rev Lett. 2011 Feb 4;106(5):058101. doi: 10.1103/PhysRevLett.106.058101. Epub 2011 Jan 31.
The collective dynamics of a network of coupled excitable systems in response to an external stimulus depends on the topology of the connections in the network. Here we develop a general theoretical approach to study the effects of network topology on dynamic range, which quantifies the range of stimulus intensities resulting in distinguishable network responses. We find that the largest eigenvalue of the weighted network adjacency matrix governs the network dynamic range. When the largest eigenvalue is exactly one, the system is in a critical state and its dynamic range is maximized. Further, we examine higher order behavior of the steady state system, which predicts that networks with more homogeneous degree distributions should have higher dynamic range. Our analysis, confirmed by numerical simulations, generalizes previous studies in terms of the largest eigenvalue of the adjacency matrix.
网络中耦合激励系统的集体动力学对外部刺激的响应取决于网络的连接拓扑。在这里,我们开发了一种通用的理论方法来研究网络拓扑对动态范围的影响,动态范围量化了导致可区分网络响应的刺激强度范围。我们发现,加权网络邻接矩阵的最大特征值控制着网络的动态范围。当最大特征值恰好为 1 时,系统处于临界状态,其动态范围最大化。此外,我们还研究了稳态系统的更高阶行为,该行为预测具有更均匀度分布的网络应该具有更高的动态范围。我们的分析通过数值模拟得到了验证,在邻接矩阵的最大特征值方面对以前的研究进行了推广。