Podvigina O, Zheligovsky V, Rempel E L, Chian A C-L, Chertovskih R, Muñoz P R
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, 84/32 Profsoyuznaya Street, 117997 Moscow, Russian Federation.
Institute of Aeronautical Technology (IEFM/ITA), São José dos Campos, São Paulo 12228-900, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032906. doi: 10.1103/PhysRevE.92.032906. Epub 2015 Sep 14.
We perform a two-parameter bifurcation study of the driven-damped regularized long-wave equation by varying the amplitude and phase of the driver. Increasing the amplitude of the driver brings the system to the regime of spatiotemporal chaos (STC), a chaotic state with a large number of degrees of freedom. Several global bifurcations are found, including codimension-two bifurcations and homoclinic bifurcations involving three-tori and the manifolds of steady waves, leading to the formation of chaotic saddles in the phase space. We identify four distinct routes to STC; they depend on the phase of the driver and involve boundary and interior crises, intermittency, the Ruelle-Takens scenario, the Feigenbaum cascade, an embedded saddle-node, homoclinic, and other bifurcations. This study elucidates some of the recently reported dynamical phenomena.
我们通过改变驱动项的振幅和相位,对受驱阻尼正则长波方程进行了双参数分岔研究。增加驱动项的振幅会使系统进入时空混沌(STC)状态,这是一种具有大量自由度的混沌状态。我们发现了几种全局分岔,包括二维余维分岔以及涉及三维环面和驻波流形的同宿分岔,这些分岔导致了相空间中混沌鞍点的形成。我们确定了通往STC的四条不同路径;它们取决于驱动项的相位,涉及边界危机和内部危机、间歇性、鲁埃尔 - 塔克恩斯情景、费根鲍姆级联、嵌入鞍结、同宿以及其他分岔。这项研究阐明了一些最近报道的动力学现象。