Hellmann Nadja, Weber Roy E, Decker Heinz
Institute for Molecular Biophysics, Johannes Gutenberg University, Mainz, Germany.
Methods Enzymol. 2008;436:463-85. doi: 10.1016/S0076-6879(08)36026-1.
Homotropic and heterotropic allosteric interactions are important mechanisms that regulate protein function. These mechanisms depend on the ability of oligomeric protein complexes to adopt different conformations and to transmit conformation-linked signals from one subunit of the complex to the neighboring ones. An important step in understanding the regulation of protein function is to identify and characterize the conformations available to the protein complex. This task becomes increasingly challenging with increasing numbers of interacting binding sites. However, a large number of interacting binding sites allows for high homotropic interactions (cooperativity) and thus represents the most interesting case. Examples of very large, cooperative protein complexes are the giant hexagonal bilayer hemoglobins of annelid worms that contain 144 oxygen-binding sites. Moreover, these proteins show strict hierarchy in structure. In order to understand the interaction of various ligands such as oxygen, CO, or nitric oxide (NO), the principle binding behavior of these protein complexes has to be understood. For the hemoglobins of two species, the hierarchical structure is shown to have functional implications. By employing simultaneous analysis of several oxygen-binding curves, it could be shown that the nested MWC model provides a good description of the functional data. A strategy for the experimental setup and data analysis is suggested that allows for a reduction in the number of free parameters. Possible advantages of a hierarchical cooperative model compared to a linear extension of the MWC model are discussed.
同向和异向别构相互作用是调节蛋白质功能的重要机制。这些机制依赖于寡聚蛋白复合物采用不同构象并将构象相关信号从复合物的一个亚基传递到相邻亚基的能力。理解蛋白质功能调节的一个重要步骤是识别和表征蛋白质复合物可采用的构象。随着相互作用结合位点数量的增加,这项任务变得越来越具有挑战性。然而,大量的相互作用结合位点允许高度的同向相互作用(协同性),因此代表了最有趣的情况。非常大的协同蛋白复合物的例子是环节动物的巨大六边形双层血红蛋白,其含有144个氧结合位点。此外,这些蛋白质在结构上表现出严格的层次结构。为了理解各种配体如氧气、一氧化碳或一氧化氮(NO)的相互作用,必须了解这些蛋白质复合物的主要结合行为。对于两个物种的血红蛋白,层次结构显示出具有功能意义。通过同时分析几条氧结合曲线,可以表明嵌套的MWC模型能够很好地描述功能数据。本文提出了一种实验设置和数据分析策略,该策略可以减少自由参数的数量。并讨论了层次协同模型相对于MWC模型线性扩展可能具有的优势。