Suppr超能文献

半位点反应性、负协同性和正协同性:一个合理模型的定量考量

Half-site reactivity, negative cooperativity, and positive cooperativity: quantitative considerations of a plausible model.

作者信息

Bloom C R, Kaarsholm N C, Ha J, Dunn M F

机构信息

Department of Biochemistry, University of California, Riverside, Riverside, California 92521, USA.

出版信息

Biochemistry. 1997 Oct 21;36(42):12759-65. doi: 10.1021/bi970762f.

Abstract

The nature of cooperative allosteric interactions has been the source of controversy since the ground-breaking studies of oxygen binding to hemoglobin. Until recently, quantitative examples of a model based on the inherent symmetry and asymmetry of oligomeric proteins have been lacking. This laboratory has used the phenolic ligand binding characteristics of the insulin hexamer to develop the first quantitative model for a symmetry-asymmetry-based cooperativity mechanism. The insulin hexamer possesses positive and negative heterotropic and homotropic interactions involving two classes of sites. In this study, we explore the effects of heterotropic interactions between these sites. We show that application of the pairwise structural asymmetry theory of Seydoux, Malhotra, and Bernhard (SMB) gives excellent agreement between the ligand binding behavior and X-ray crystal structure data. Furthermore, by comparing experimental data with computer simulations, we show that the insulin hexamer can be described by a three-state SMB model involving two positive homotropic cooperative transitions linked by a negative homotropic interaction. The first transition, T3T3' right harpoon over left harpoon T3oR3o, with allosteric constant LoA = [T3T3']/[T3oR3o] and ligand dissociation constant KRo consists of a positive cooperative change from high to low symmetry that results in "half-site reactivity". The second transition, T3oR3o right harpoon over left harpoon R3R3', with allosteric constant LoB = [T3oR3o]/[R3R3'] and ligand dissociation constant KR is a change from low to high symmetry, which is also a positive cooperative process. Treatment of the two transitions as concerted and interconnected processes allows derivation of an equation for the fraction of R-state. Using this equation, the effects of changes in the four physical parameters, LoA, LoB, KR, and KRo, on the ligand binding properties of the insulin hexamer are quantitatively described.

摘要

自从对氧气与血红蛋白结合的开创性研究以来,合作变构相互作用的本质一直是争议的根源。直到最近,基于寡聚蛋白固有对称性和不对称性的模型的定量实例一直缺乏。本实验室利用胰岛素六聚体的酚类配体结合特性,开发了第一个基于对称性 - 不对称性的协同机制定量模型。胰岛素六聚体具有涉及两类位点的正负异促和同促相互作用。在本研究中,我们探讨了这些位点之间异促相互作用的影响。我们表明,应用Seydoux、Malhotra和Bernhard(SMB)的成对结构不对称理论,可使配体结合行为与X射线晶体结构数据高度吻合。此外,通过将实验数据与计算机模拟进行比较,我们表明胰岛素六聚体可以用一个三态SMB模型来描述,该模型涉及两个由负同促相互作用连接的正同促协同转变。第一个转变,T3T3' ↔ T3oR3o,变构常数LoA = [T3T3'] / [T3oR3o],配体解离常数KRo,是从高对称到低对称的正协同变化,导致“半位点反应性”。第二个转变,T3oR3o ↔ R3R3',变构常数LoB = [T3oR3o] / [R3R3'],配体解离常数KR,是从低对称到高对称的变化,这也是一个正协同过程。将这两个转变视为协同和相互关联的过程,可以推导出R态分数的方程。利用这个方程,定量描述了四个物理参数LoA、LoB、KR和KRo的变化对胰岛素六聚体配体结合特性的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验