School of Computer Science, The University of Nottingham, Nottingham NG8 1BB, UK.
IEEE Trans Image Process. 2003;12(1):93-101. doi: 10.1109/TIP.2002.807356.
This paper presents a new application of a well-studied image coding technique, namely block truncation coding (BTC). It is shown that BTC can not only be used for compressing color images, it can also be conveniently used for content-based image retrieval from image databases. From the BTC compressed stream (without performing decoding), we derive two image content description features, one termed the block color co-occurrence matrix (BCCM) and the other block pattern histogram (BPH). We use BCCM and BPH to compute the similarity measures of images for content-based image retrieval applications. Experimental results are presented which demonstrate that BCCM and BPH are comparable to similar state of the art techniques.
本文提出了一种经过充分研究的图像编码技术——块截断编码(BTC)的新应用。结果表明,BTC 不仅可用于压缩彩色图像,还可方便地用于基于内容的图像数据库检索。我们从 BTC 压缩流(无需解码)中推导出两个图像内容描述特征,一个称为块颜色共生矩阵(BCCM),另一个称为块模式直方图(BPH)。我们使用 BCCM 和 BPH 计算基于内容的图像检索应用的图像相似度度量。实验结果表明,BCCM 和 BPH 可与类似的最先进技术相媲美。