Suppr超能文献

粒度聚类:数据的粒度特征

Granular clustering: a granular signature of data.

作者信息

Pedrycz W, Bargiela A

机构信息

Dept. of Electr. & Comput. Eng., Alberta Univ., Edmonton, Alta.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2002;32(2):212-24. doi: 10.1109/3477.990878.

Abstract

The study is devoted to a granular analysis of data. We develop a new clustering algorithm that organizes findings about data in the form of a collection of information granules-hyperboxes. The clustering carried out here is an example of a granulation mechanism. We discuss a compatibility measure guiding a construction (growth) of the clusters and explain a rationale behind their development. The clustering promotes a data mining way of problem solving by emphasizing the transparency of the results (hyperboxes). We discuss a number of indexes describing hyperboxes and expressing relationships between such information granules. It is also shown how the resulting family of the information granules is a concise descriptor of the structure of the data-a granular signature of the data. We examine the properties of features (variables) occurring of the problem as they manifest in the setting of the information granules. Numerical experiments are carried out based on two-dimensional (2-D) synthetic data as well as multivariable Boston data available on the WWW.

摘要

该研究致力于数据的粒度分析。我们开发了一种新的聚类算法,该算法以信息粒度集合——超盒的形式组织有关数据的发现。这里进行的聚类是粒度机制的一个示例。我们讨论了指导聚类构建(增长)的兼容性度量,并解释了其发展背后的基本原理。通过强调结果(超盒)的透明度,聚类促进了一种数据挖掘式的问题解决方式。我们讨论了一些描述超盒并表达此类信息粒度之间关系的指标。还展示了所得的信息粒度族如何成为数据结构的简洁描述符——数据的粒度签名。我们研究了问题中出现的特征(变量)在信息粒度设置中的表现特性。基于二维(2-D)合成数据以及万维网上可用的多变量波士顿数据进行了数值实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验