Suppr超能文献

增长型分层自组织映射:高维数据的探索性分析

The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data.

作者信息

Rauber A, Merkl D, Dittenbach M

机构信息

Dept. of Software Technol. and Interactive Syst., Vienna Univ. of Technol., Austria.

出版信息

IEEE Trans Neural Netw. 2002;13(6):1331-41. doi: 10.1109/TNN.2002.804221.

Abstract

The self-organizing map (SOM) is a very popular unsupervised neural-network model for the analysis of high-dimensional input data as in data mining applications. However, at least two limitations have to be noted, which are related to the static architecture of this model as well as to the limited capabilities for the representation of hierarchical relations of the data. With our novel growing hierarchical SOM (GHSOM) we address both limitations. The GHSOM is an artificial neural-network model with hierarchical architecture composed of independent growing SOMs. The motivation was to provide a model that adapts its architecture during its unsupervised training process according to the particular requirements of the input data. Furthermore, by providing a global orientation of the independently growing maps in the individual layers of the hierarchy, navigation across branches is facilitated. The benefits of this novel neural network are a problem-dependent architecture and the intuitive representation of hierarchical relations in the data. This is especially appealing in explorative data mining applications, allowing the inherent structure of the data to unfold in a highly intuitive fashion.

摘要

自组织映射(SOM)是一种非常流行的无监督神经网络模型,用于分析数据挖掘应用中的高维输入数据。然而,至少有两个局限性需要注意,这与该模型的静态架构以及表示数据层次关系的能力有限有关。我们提出的新型生长层次自组织映射(GHSOM)解决了这两个局限性。GHSOM是一种具有层次架构的人工神经网络模型,由独立生长的SOM组成。其动机是提供一种在无监督训练过程中根据输入数据的特定要求调整其架构的模型。此外,通过在层次结构的各个层中为独立生长的映射提供全局方向,便于跨分支导航。这种新型神经网络的优点是依赖于问题的架构以及数据中层次关系的直观表示。这在探索性数据挖掘应用中特别有吸引力,允许数据的固有结构以高度直观的方式展现出来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验