Suppr超能文献

应用生长层次自组织映射对网络取证流量数据进行可视化。

Application of growing hierarchical SOM for visualisation of network forensics traffic data.

机构信息

Department of Computer Science, University of Malaga, Malaga, Spain.

出版信息

Neural Netw. 2012 Aug;32:275-84. doi: 10.1016/j.neunet.2012.02.021. Epub 2012 Feb 14.

Abstract

Digital investigation methods are becoming more and more important due to the proliferation of digital crimes and crimes involving digital evidence. Network forensics is a research area that gathers evidence by collecting and analysing network traffic data logs. This analysis can be a difficult process, especially because of the high variability of these attacks and large amount of data. Therefore, software tools that can help with these digital investigations are in great demand. In this paper, a novel approach to analysing and visualising network traffic data based on growing hierarchical self-organising maps (GHSOM) is presented. The self-organising map (SOM) has been shown to be successful for the analysis of highly-dimensional input data in data mining applications as well as for data visualisation in a more intuitive and understandable manner. However, the SOM has some problems related to its static topology and its inability to represent hierarchical relationships in the input data. The GHSOM tries to overcome these limitations by generating a hierarchical architecture that is automatically determined according to the input data and reflects the inherent hierarchical relationships among them. Moreover, the proposed GHSOM has been modified to correctly treat the qualitative features that are present in the traffic data in addition to the quantitative features. Experimental results show that this approach can be very useful for a better understanding of network traffic data, making it easier to search for evidence of attacks or anomalous behaviour in a network environment.

摘要

由于数字犯罪和涉及数字证据的犯罪的激增,数字调查方法变得越来越重要。网络取证是一个通过收集和分析网络流量数据日志来收集证据的研究领域。这种分析可能是一个困难的过程,特别是因为这些攻击的高度可变性和大量的数据。因此,能够帮助进行这些数字调查的软件工具需求量很大。在本文中,提出了一种基于增长型层次自组织映射 (GHSOM) 的分析和可视化网络流量数据的新方法。自组织映射 (SOM) 已被证明在数据挖掘应用中分析高维输入数据以及以更直观和易于理解的方式进行数据可视化方面非常成功。然而,SOM 存在一些与其静态拓扑结构和无法表示输入数据中的层次关系有关的问题。GHSOM 试图通过生成根据输入数据自动确定的层次结构来克服这些限制,该层次结构反映了它们之间固有的层次关系。此外,对所提出的 GHSOM 进行了修改,以便除了定量特征之外,还可以正确处理流量数据中存在的定性特征。实验结果表明,这种方法对于更好地理解网络流量数据非常有用,使得更容易在网络环境中搜索攻击或异常行为的证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验