Suppr超能文献

恶性黑色素瘤中基因组多样性和肿瘤依赖性的建模

Modeling genomic diversity and tumor dependency in malignant melanoma.

作者信息

Lin William M, Baker Alissa C, Beroukhim Rameen, Winckler Wendy, Feng Whei, Marmion Jennifer M, Laine Elisabeth, Greulich Heidi, Tseng Hsiuyi, Gates Casey, Hodi F Stephen, Dranoff Glenn, Sellers William R, Thomas Roman K, Meyerson Matthew, Golub Todd R, Dummer Reinhard, Herlyn Meenhard, Getz Gad, Garraway Levi A

机构信息

Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Cancer Res. 2008 Feb 1;68(3):664-73. doi: 10.1158/0008-5472.CAN-07-2615.

Abstract

The classification of human tumors based on molecular criteria offers tremendous clinical potential; however, discerning critical and "druggable" effectors on a large scale will also require robust experimental models reflective of tumor genomic diversity. Here, we describe a comprehensive genomic analysis of 101 melanoma short-term cultures and cell lines. Using an analytic approach designed to enrich for putative "driver" events, we show that cultured melanoma cells encompass the spectrum of significant genomic alterations present in primary tumors. When annotated according to these lesions, melanomas cluster into subgroups suggestive of distinct oncogenic mechanisms. Integrating gene expression data suggests novel candidate effector genes linked to recurrent copy gains and losses, including both phosphatase and tensin homologue (PTEN)-dependent and PTEN-independent tumor suppressor mechanisms associated with chromosome 10 deletions. Finally, sample-matched pharmacologic data show that FGFR1 mutations and extracellular signal-regulated kinase (ERK) activation may modulate sensitivity to mitogen-activated protein kinase/ERK kinase inhibitors. Genetically defined cell culture collections therefore offer a rich framework for systematic functional studies in melanoma and other tumors.

摘要

基于分子标准对人类肿瘤进行分类具有巨大的临床潜力;然而,大规模识别关键且“可药物作用”的效应因子也需要能够反映肿瘤基因组多样性的可靠实验模型。在此,我们描述了对101个黑色素瘤短期培养物和细胞系的全面基因组分析。使用一种旨在富集假定“驱动”事件的分析方法,我们表明培养的黑色素瘤细胞涵盖了原发性肿瘤中存在的显著基因组改变的范围。根据这些病变进行注释时,黑色素瘤聚集成亚组,提示不同的致癌机制。整合基因表达数据提示了与反复出现的拷贝数增加和缺失相关的新型候选效应基因,包括与10号染色体缺失相关的磷酸酶和张力蛋白同源物(PTEN)依赖性和非PTEN依赖性肿瘤抑制机制。最后,样本匹配的药理学数据表明,FGFR1突变和细胞外信号调节激酶(ERK)激活可能会调节对丝裂原活化蛋白激酶/ERK激酶抑制剂的敏感性。因此,基因定义的细胞培养物集合为黑色素瘤和其他肿瘤的系统功能研究提供了丰富的框架。

相似文献

1
Modeling genomic diversity and tumor dependency in malignant melanoma.
Cancer Res. 2008 Feb 1;68(3):664-73. doi: 10.1158/0008-5472.CAN-07-2615.
4
COT drives resistance to RAF inhibition through MAP kinase pathway reactivation.
Nature. 2010 Dec 16;468(7326):968-72. doi: 10.1038/nature09627. Epub 2010 Nov 24.
5
PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines.
Melanoma Res. 2002 Dec;12(6):565-75. doi: 10.1097/00008390-200212000-00006.
6
Identification of PTEN mutations in metastatic melanoma specimens.
J Med Genet. 2000 Sep;37(9):653-7. doi: 10.1136/jmg.37.9.653.
7
KLF4 is regulated by RAS/RAF/MEK/ERK signaling through E2F1 and promotes melanoma cell growth.
Oncogene. 2017 Jun 8;36(23):3322-3333. doi: 10.1038/onc.2016.481. Epub 2017 Jan 9.
10
miR-876-3p is a tumor suppressor on 9p21 that is inactivated in melanoma and targets ERK.
J Transl Med. 2024 Aug 13;22(1):758. doi: 10.1186/s12967-024-05527-7.

引用本文的文献

2
A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism.
Ann Med Surg (Lond). 2024 Aug 7;86(10):5877-5913. doi: 10.1097/MS9.0000000000002392. eCollection 2024 Oct.
3
Progress in patient-derived liver cancer cell models: a step forward for precision medicine.
Acta Biochim Biophys Sin (Shanghai). 2023 Nov 25;55(11):1707-1717. doi: 10.3724/abbs.2023224.
4
Replication stress in mammalian embryo development, differentiation, and reprogramming.
Trends Cell Biol. 2023 Oct;33(10):872-886. doi: 10.1016/j.tcb.2023.03.015. Epub 2023 May 16.
5
The Emerging Burden of Genetic Instability and Mutation in Melanoma: Role of Molecular Mechanisms.
Cancers (Basel). 2022 Dec 15;14(24):6202. doi: 10.3390/cancers14246202.
6
Causes, consequences and clinical significance of aneuploidy across melanoma subtypes.
Front Oncol. 2022 Oct 6;12:988691. doi: 10.3389/fonc.2022.988691. eCollection 2022.
7
Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review.
Front Genet. 2022 Mar 22;13:854752. doi: 10.3389/fgene.2022.854752. eCollection 2022.
8
NRF2 and Key Transcriptional Targets in Melanoma Redox Manipulation.
Cancers (Basel). 2022 Mar 16;14(6):1531. doi: 10.3390/cancers14061531.
9
Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma.
Oncoimmunology. 2022 Jan 3;11(1):2021619. doi: 10.1080/2162402X.2021.2021619. eCollection 2022.
10
MMP-9 drives the melanomagenic transcription program through histone H3 tail proteolysis.
Oncogene. 2022 Jan;41(4):560-570. doi: 10.1038/s41388-021-02109-5. Epub 2021 Nov 16.

本文引用的文献

1
Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma.
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20007-12. doi: 10.1073/pnas.0710052104. Epub 2007 Dec 6.
2
Characterizing the cancer genome in lung adenocarcinoma.
Nature. 2007 Dec 6;450(7171):893-8. doi: 10.1038/nature06358. Epub 2007 Nov 4.
4
High-throughput oncogene mutation profiling in human cancer.
Nat Genet. 2007 Mar;39(3):347-51. doi: 10.1038/ng1975. Epub 2007 Feb 11.
5
Genomic profiling of malignant melanoma using tiling-resolution arrayCGH.
Oncogene. 2007 Jul 12;26(32):4738-48. doi: 10.1038/sj.onc.1210252. Epub 2007 Jan 29.
6
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.
Cancer Cell. 2006 Dec;10(6):515-27. doi: 10.1016/j.ccr.2006.10.008.
7
The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease.
Science. 2006 Sep 29;313(5795):1929-35. doi: 10.1126/science.1132939.
8
Malignant melanoma: genetics and therapeutics in the genomic era.
Genes Dev. 2006 Aug 15;20(16):2149-82. doi: 10.1101/gad.1437206.
9
A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer.
N Engl J Med. 2006 Aug 10;355(6):570-80. doi: 10.1056/NEJMoa060467.
10
Melanoma.
N Engl J Med. 2006 Jul 6;355(1):51-65. doi: 10.1056/NEJMra052166.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验