Suppr超能文献

解离对转座子介导的疾病控制策略的影响。

The impact of dissociation on transposon-mediated disease control strategies.

作者信息

Marshall John M

机构信息

Department of Biomathematics, University of California School of Medicine, Los Angeles, California 90095-1766, USA.

出版信息

Genetics. 2008 Mar;178(3):1673-82. doi: 10.1534/genetics.107.082099. Epub 2008 Feb 3.

Abstract

Vector-borne diseases such as malaria and dengue fever continue to be a major health concern through much of the world. The emergence of chloroquine-resistant strains of malaria and insecticide-resistant mosquitoes emphasize the need for novel methods of disease control. Recently, there has been much interest in the use of transposable elements to drive resistance genes into vector populations as a means of disease control. One concern that must be addressed before a release is performed is the potential loss of linkage between a transposable element and a resistance gene. Transposable elements such as P and hobo have been shown to produce internal deletion derivatives at a significant rate, and there is concern that a similar process could lead to loss of the resistance gene from the drive system following a transgenic release. Additionally, transposable elements such as Himar1 have been shown to transpose significantly more frequently when free of exogenous DNA. Here, we show that any transposon-mediated gene drive strategy must have an exceptionally low rate of dissociation if it is to be effective. Additionally, the resistance gene must confer a large selective advantage to the vector to surmount the effects of a moderate dissociation rate and transpositional handicap.

摘要

疟疾和登革热等媒介传播疾病在世界大部分地区仍然是主要的健康问题。耐氯喹疟原虫株和抗杀虫剂蚊子的出现凸显了采用新的疾病控制方法的必要性。最近,人们对利用转座元件将抗性基因导入病媒种群作为一种疾病控制手段产生了浓厚兴趣。在进行释放之前必须解决的一个问题是转座元件与抗性基因之间潜在的连锁丢失。诸如P和hobo等转座元件已被证明会以相当高的频率产生内部缺失衍生物,人们担心类似的过程可能导致转基因释放后驱动系统中抗性基因的丢失。此外,诸如Himar1等转座元件在没有外源DNA时已被证明转座频率显著更高。在此,我们表明,任何转座子介导的基因驱动策略若要有效,其解离率必须极低。此外,抗性基因必须赋予病媒巨大的选择优势,以克服适度解离率和转座障碍的影响。

相似文献

1
The impact of dissociation on transposon-mediated disease control strategies.
Genetics. 2008 Mar;178(3):1673-82. doi: 10.1534/genetics.107.082099. Epub 2008 Feb 3.
2
Germline transformation of Aedes fluviatilis (Diptera:Culicidae) with the piggyBac transposable element.
Mem Inst Oswaldo Cruz. 2006 Nov;101(7):755-7. doi: 10.1590/s0074-02762006000700008.
4
The effect of gene drive on containment of transgenic mosquitoes.
J Theor Biol. 2009 May 21;258(2):250-65. doi: 10.1016/j.jtbi.2009.01.031. Epub 2009 Feb 7.
7
Mobility of hAT transposable elements in the Old World bollworm, Helicoverpa armigera.
Insect Mol Biol. 1996 Nov;5(4):223-7. doi: 10.1111/j.1365-2583.1996.tb00096.x.
9
Gene vector and transposable element behavior in mosquitoes.
J Exp Biol. 2003 Nov;206(Pt 21):3823-34. doi: 10.1242/jeb.00638.
10
Stable germline transformation of the malaria mosquito Anopheles stephensi.
Nature. 2000 Jun 22;405(6789):959-62. doi: 10.1038/35016096.

引用本文的文献

1
Transformative Approaches for Sustainable Weed Management: The Power of Gene Drive and CRISPR-Cas9.
Genes (Basel). 2023 Dec 4;14(12):2176. doi: 10.3390/genes14122176.
3
Modeling the mutation and reversal of engineered underdominance gene drives.
J Theor Biol. 2019 Oct 21;479:14-21. doi: 10.1016/j.jtbi.2019.06.024. Epub 2019 Jun 29.
4
Dynamics of Transposable Element Invasions with piRNA Clusters.
Mol Biol Evol. 2019 Jul 1;36(7):1457-1472. doi: 10.1093/molbev/msz079.
5
Population dynamics of engineered underdominance and killer-rescue gene drives in the control of disease vectors.
PLoS Comput Biol. 2018 Mar 23;14(3):e1006059. doi: 10.1371/journal.pcbi.1006059. eCollection 2018 Mar.
6
Conditions for success of engineered underdominance gene drive systems.
J Theor Biol. 2017 Oct 7;430:128-140. doi: 10.1016/j.jtbi.2017.07.014. Epub 2017 Jul 17.
7
Evaluating paratransgenesis as a potential control strategy for African trypanosomiasis.
PLoS Negl Trop Dis. 2013 Aug 15;7(8):e2374. doi: 10.1371/journal.pntd.0002374. eCollection 2013.
8
Confinement of gene drive systems to local populations: a comparative analysis.
J Theor Biol. 2012 Feb 7;294:153-71. doi: 10.1016/j.jtbi.2011.10.032. Epub 2011 Nov 9.
9
Engineering the genomes of wild insect populations: challenges, and opportunities provided by synthetic Medea selfish genetic elements.
J Insect Physiol. 2010 Oct;56(10):1402-13. doi: 10.1016/j.jinsphys.2010.05.022. Epub 2010 Jun 9.
10
Malaria control with transgenic mosquitoes.
PLoS Med. 2009 Feb 10;6(2):e20. doi: 10.1371/journal.pmed.1000020.

本文引用的文献

1
Prospects for vector control through genetic manipulation of populations.
Bull World Health Organ. 1963;29 Suppl(Suppl):89-97.
2
Transposable element dynamics of the hAT element Herves in the human malaria vector Anopheles gambiae s.s.
Genetics. 2007 Aug;176(4):2477-87. doi: 10.1534/genetics.107.071811. Epub 2007 Jul 1.
3
Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood.
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5580-3. doi: 10.1073/pnas.0609809104. Epub 2007 Mar 19.
4
The effect of gap length on double-strand break repair in Drosophila.
Genetics. 2006 Aug;173(4):2033-8. doi: 10.1534/genetics.106.059436. Epub 2006 May 15.
5
Reversible introduction of transgenes in natural populations of insects.
Insect Mol Biol. 2006 Apr;15(2):227-34. doi: 10.1111/j.1365-2583.2006.00631.x.
7
Transposable element insertion location bias and the dynamics of gene drive in mosquito populations.
Insect Mol Biol. 2005 Oct;14(5):493-500. doi: 10.1111/j.1365-2583.2005.00580.x.
8
The first steps of transposable elements invasion: parasitic strategy vs. genetic drift.
Genetics. 2005 Feb;169(2):1033-43. doi: 10.1534/genetics.104.031211.
9
Gene drive systems in mosquitoes: rules of the road.
Trends Parasitol. 2005 Feb;21(2):64-7. doi: 10.1016/j.pt.2004.11.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验