Division of Biology, MC156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, United States.
J Insect Physiol. 2010 Oct;56(10):1402-13. doi: 10.1016/j.jinsphys.2010.05.022. Epub 2010 Jun 9.
Advances in insect transgenesis and our knowledge of insect physiology and genomics are making it possible to create transgenic populations of beneficial or pest insects that express novel traits. There are contexts in which we may want the transgenes responsible for these traits to spread so that all individuals within a wild population carry them, a process known as population replacement. Transgenes of interest are unlikely to confer an overall fitness benefit on those who carry them. Therefore, an essential component of any population replacement strategy is the presence of a drive mechanism that will ensure the spread of linked transgenes. We discuss contexts in which population replacement might be desirable and the requirements a drive system must satisfy to be both effective and safe. We then describe the creation of synthetic Medea elements, the first selfish genetic elements synthesized de novo, with the capability of driving population replacement, in this case in Drosophila. The strategy used to create Drosophila Medea is applicable to a number of other insect species and the Medea system satisfies key requirements for scientific and social acceptance. Finally, we highlight several challenges to implementing population replacement in the wild.
昆虫转基因技术的进步和我们对昆虫生理学和基因组学的了解,使得创造表达新性状的有益或害虫昆虫的转基因种群成为可能。在某些情况下,我们可能希望负责这些性状的转基因能够传播,以便野生种群中的所有个体都携带它们,这个过程被称为种群替换。感兴趣的转基因不太可能给携带它们的个体带来整体适应度的好处。因此,任何种群替换策略的一个重要组成部分是存在一种驱动机制,以确保连锁转基因的传播。我们讨论了种群替换可能是可取的情况,以及驱动系统必须满足的要求,以使其既有效又安全。然后,我们描述了合成 Medea 元件的创建,这是首次从头合成的具有驱动种群替换能力的自私遗传元件,在这种情况下是在果蝇中。用于创建果蝇 Medea 的策略适用于许多其他昆虫物种,并且 Medea 系统满足了科学和社会接受的关键要求。最后,我们强调了在野外实施种群替换的几个挑战。