Suppr超能文献

发声过程中非定常空气动力学效应的理论评估。

Theoretical assessment of unsteady aerodynamic effects in phonation.

作者信息

Krane Michael H, Wei Timothy

机构信息

Center for Advanced Information Processing, Rutgers University, Piscataway, New Jersey 08854, USA.

出版信息

J Acoust Soc Am. 2006 Sep;120(3):1578-88. doi: 10.1121/1.2215408.

Abstract

This paper ranks the importance of unsteady aerodynamic mechanisms in glottal flow. Particular emphasis is given to separation point motion, acceleration of glottal airflow by vocal fold motion, and viscous blockage. How nondimensional parameters such as the Reynolds, Strouhal, and Womersley numbers help in this ranking is also addressed. An equation of motion is derived which includes terms explicitly describing the effects of interest, assuming (1) a symmetrical glottis, (2) zero pressure recovery downstream of the vocal folds, and (3) a quasisteady glottal jet. Estimating the order of magnitude of the terms in this equation, it is shown that the flow is characterized by two temporal regimes: (1) a flow initiation/shutoff regime where local unsteady acceleration and wall motion dominate, and (2) a "quasisteady" regime where the flow is dominated by convective acceleration. In the latter case, separation point motion and viscous blockage are shown to be out of phase with motion of the vocal folds, thereby impacting the shape of the glottal volume flow waveform. The analysis suggests that glottal flow may be considered quasisteady only insofar as traditional assumptions concerning glottal jet behavior can be confirmed.

摘要

本文对声门气流中非定常气动机制的重要性进行了排序。特别强调了分离点运动、声带运动引起的声门气流加速以及粘性阻塞。还讨论了诸如雷诺数、斯特劳哈尔数和沃默斯利数等无量纲参数在这种排序中的作用。在假设(1)声门对称、(2)声带下游压力恢复为零以及(3)声门射流为准稳态的情况下,推导了一个运动方程,该方程明确包含了描述相关效应的项。通过估计该方程中各项的量级,结果表明气流具有两种时间状态:(1)流动起始/关闭状态,此时局部非定常加速度和壁面运动起主导作用;(2)“准稳态”状态,此时流动由对流加速度主导。在后一种情况下,分离点运动和粘性阻塞与声带运动不同相,从而影响声门体积流量波形的形状。分析表明,只有在能够证实关于声门射流行为的传统假设时,声门气流才可以被认为是准稳态的。

相似文献

1
Theoretical assessment of unsteady aerodynamic effects in phonation.
J Acoust Soc Am. 2006 Sep;120(3):1578-88. doi: 10.1121/1.2215408.
2
Dynamics of temporal variations in phonatory flow.
J Acoust Soc Am. 2010 Jul;128(1):372-83. doi: 10.1121/1.3365312.
3
Unsteady behavior of flow in a scaled-up vocal folds model.
J Acoust Soc Am. 2007 Dec;122(6):3659-70. doi: 10.1121/1.2409485.
4
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
5
Theoretical consideration of the flow behavior in oscillating vocal fold.
J Biomech. 2009 May 11;42(7):824-9. doi: 10.1016/j.jbiomech.2009.01.027. Epub 2009 Mar 9.
6
Unsteady laryngeal airflow simulations of the intra-glottal vortical structures.
J Acoust Soc Am. 2010 Jan;127(1):435-44. doi: 10.1121/1.3271276.
7
An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
J Acoust Soc Am. 2006 May;119(5 Pt 1):3011-21. doi: 10.1121/1.2186429.
9
Optimal glottal configuration for ease of phonation.
J Voice. 1998 Jun;12(2):151-8. doi: 10.1016/s0892-1997(98)80034-9.
10
Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
J Biomech. 2015 May 1;48(7):1248-57. doi: 10.1016/j.jbiomech.2015.03.010. Epub 2015 Mar 19.

引用本文的文献

2
Phase-averaged and cycle-to-cycle analysis of jet dynamics in a scaled up vocal-fold model.
J Fluid Mech. 2021 Jul 10;918. doi: 10.1017/jfm.2021.365. Epub 2021 May 17.
3
Aeroacoustic source characterization in a physical model of phonation.
J Acoust Soc Am. 2019 Aug;146(2):1230. doi: 10.1121/1.5122787.
5
A canonical biomechanical vocal fold model.
J Voice. 2012 Sep;26(5):535-47. doi: 10.1016/j.jvoice.2011.09.001. Epub 2011 Dec 29.
6
Mechanism of and threshold biomechanical conditions for falsetto voice onset.
PLoS One. 2011 Mar 7;6(3):e17503. doi: 10.1371/journal.pone.0017503.
7
Dynamics of temporal variations in phonatory flow.
J Acoust Soc Am. 2010 Jul;128(1):372-83. doi: 10.1121/1.3365312.
8
Unsteady laryngeal airflow simulations of the intra-glottal vortical structures.
J Acoust Soc Am. 2010 Jan;127(1):435-44. doi: 10.1121/1.3271276.
9
Unsteady behavior of flow in a scaled-up vocal folds model.
J Acoust Soc Am. 2007 Dec;122(6):3659-70. doi: 10.1121/1.2409485.

本文引用的文献

1
Flow separation in a computational oscillating vocal fold model.
J Acoust Soc Am. 2004 Sep;116(3):1710-9. doi: 10.1121/1.1779274.
2
Influence of collision on the flow through in-vitro rigid models of the vocal folds.
J Acoust Soc Am. 2003 Dec;114(6 Pt 1):3354-62. doi: 10.1121/1.1625933.
3
Unsteady flow through in-vitro models of the glottis.
J Acoust Soc Am. 2003 Mar;113(3):1658-75. doi: 10.1121/1.1547459.
6
Voice simulation with a body-cover model of the vocal folds.
J Acoust Soc Am. 1995 Feb;97(2):1249-60. doi: 10.1121/1.412234.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验