Suppr超能文献

利用时间反转算子分解进行散斑中的格林函数估计:在医学成像像差校正中的应用

Green's function estimation in speckle using the decomposition of the time reversal operator: application to aberration correction in medical imaging.

作者信息

Robert Jean-Luc, Fink Mathias

机构信息

Philips Research North America, 345 Scarborough Road, Briarcliff Manor, New York 10510, USA.

出版信息

J Acoust Soc Am. 2008 Feb;123(2):866-77. doi: 10.1121/1.2816562.

Abstract

The FDORT method (French acronym for decomposition of the time reversal operator using focused beams) is a time reversal based method that can detect point scatterers in a heterogeneous medium and extract their Green's function. It is particularly useful when focusing in a heterogeneous medium. This paper generalizes the theory of the FDORT method to random media (speckle), and shows that it is possible to extract Green's functions from the speckle signal using this method. Therefore it is possible to achieve a good focusing even if no point scatterers are present. Moreover, a link is made between FDORT and the Van Cittert-Zernike theorem. It is deduced from this interpretation that the normalized first eigenvalue of the focused time reversal operator is a well-known focusing criterion. The concept of an equivalent virtual object is introduced that allows the random problem to be replaced by an equivalent deterministic problem and leads to an intuitive understanding of FDORT in speckle. Applications to aberration correction are presented. The reduction of the variance of the Green's function estimate is discussed. Finally, it is shown that the method works well in the presence of strong interfering scatterers.

摘要

FDORT方法(法语中“使用聚焦波束分解时间反转算子”的首字母缩写)是一种基于时间反转的方法,它能够在非均匀介质中检测点散射体并提取其格林函数。在非均匀介质中进行聚焦时,该方法尤为有用。本文将FDORT方法的理论推广至随机介质(散斑),并表明使用此方法能够从散斑信号中提取格林函数。因此,即使不存在点散射体,也能够实现良好的聚焦。此外,还建立了FDORT与范西特 - 泽尼克定理之间的联系。由此解释推断出,聚焦时间反转算子的归一化第一特征值是一个众所周知的聚焦准则。引入了等效虚拟物体的概念,该概念使得随机问题能够被等效确定性问题所取代,并有助于直观理解散斑中的FDORT。文中给出了像差校正的应用。讨论了格林函数估计方差的降低。最后,结果表明该方法在存在强干扰散射体的情况下也能很好地工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验