Dufour Roger M, Miller Eric L, Galatsanos Nikolas P
MIT Lincoln Lab., Lexington, MA 02420-9185, USA.
IEEE Trans Image Process. 2002;11(12):1385-96. doi: 10.1109/TIP.2002.806245.
In this paper, we examine the problem of locating an object in an image when size and rotation are unknown. Previous work has shown that with known geometric parameters, an image restoration method can be useful by estimating a delta function at the object location. When the geometric parameters are unknown, this method becomes impractical because the likelihood surface to be minimized across size and rotation has numerous local minima and areas of zero gradient. We propose a new approach where a smooth approximation of the template is used to minimize a well-behaved likelihood surface. A coarse-to-fine approximation of the original template using a diffusion-like equation is used to create a library of templates. Using this library, we can successively perform minimizations which are locally well-behaved. As detail is added to the template, the likelihood surface gains local minima, but previous estimates place us within a well-behaved "bowl" around the global minimum, leading to an accurate estimate. Numerical experiments are shown which verify the value of this approach for a wide range of values of the geometric parameters.
在本文中,我们研究了在尺寸和旋转未知的情况下在图像中定位物体的问题。先前的工作表明,对于已知的几何参数,通过在物体位置估计一个狄拉克函数,图像恢复方法可能会有用。当几何参数未知时,这种方法变得不切实际,因为要在尺寸和旋转上最小化的似然曲面有许多局部最小值和零梯度区域。我们提出了一种新方法,其中使用模板的平滑近似来最小化一个表现良好的似然曲面。使用类似扩散方程对原始模板进行从粗到细的近似来创建一个模板库。利用这个模板库,我们可以连续进行局部表现良好的最小化操作。随着模板中细节的增加,似然曲面会出现局部最小值,但先前的估计使我们处于全局最小值周围一个表现良好的“碗”内,从而得到准确的估计。给出了数值实验,验证了该方法对于广泛的几何参数值的有效性。