Suppr超能文献

一种基于贝叶斯范例的层次形状匹配方法。

A Bayesian, exemplar-based approach to hierarchical shape matching.

作者信息

Gavrila Dariu M

机构信息

Machine Perception Department of DainlerChrysler R&D, Ulm, Germany.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Aug;29(8):1408-21. doi: 10.1109/TPAMI.2007.1062.

Abstract

This paper presents a novel probabilistic approach to hierarchical, exemplar-based shape matching. No feature correspondence is needed among exemplars, just a suitable pairwise similarity measure. The approach uses a template tree to efficiently represent and match the variety of shape exemplars. The tree is generated offline by a bottom-up clustering approach using stochastic optimization. Online matching involves a simultaneous coarse-to-fine approach over the template tree and over the transformation parameters. The main contribution of this paper is a Bayesian model to estimate the a posteriori probability of the object class, after a certain match at a node of the tree. This model takes into account object scale and saliency and allows for a principled setting of the matching thresholds such that unpromising paths in the tree traversal process are eliminated early on. The proposed approach was tested in a variety of application domains. Here, results are presented on one of the more challenging domains: real-time pedestrian detection from a moving vehicle. A significant speed-up is obtained when comparing the proposed probabilistic matching approach with a manually tuned nonprobabilistic variant, both utilizing the same template tree structure.

摘要

本文提出了一种新颖的概率方法,用于基于示例的分层形状匹配。示例之间无需特征对应,仅需合适的成对相似性度量。该方法使用模板树来有效地表示和匹配各种形状示例。该树通过使用随机优化的自底向上聚类方法离线生成。在线匹配涉及在模板树和变换参数上同时采用从粗到细的方法。本文的主要贡献是一个贝叶斯模型,用于在树的某个节点进行一定匹配后估计对象类别的后验概率。该模型考虑了对象的尺度和显著性,并允许对匹配阈值进行有原则的设置,以便在树遍历过程中尽早消除没有希望的路径。所提出的方法在各种应用领域进行了测试。在此,给出了在一个更具挑战性的领域中的结果:从移动车辆上进行实时行人检测。当将所提出的概率匹配方法与手动调整的非概率变体进行比较时,二者都利用相同的模板树结构,结果显示速度显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验