Suppr超能文献

基于改进的支持向量方法训练多层感知器分类器。

Training multilayer perceptron classifiers based on a modified support vector method.

作者信息

Suykens J K, Vandewalle J

机构信息

Department of Electrical Engineering, Katholieke Universiteit Leuven, ESAT-SISTA, Kardinaal Mercierlaan 94, B-3001 Leuven (Heverlee), Belgium.

出版信息

IEEE Trans Neural Netw. 1999;10(4):907-11. doi: 10.1109/72.774254.

Abstract

In this paper we describe a training method for one hidden layer multilayer perceptron classifier which is based on the idea of support vector machines (SVM's). An upper bound on the Vapnik-Chervonenkis (VC) dimension is iteratively minimized over the interconnection matrix of the hidden layer and its bias vector. The output weights are determined according to the support vector method, but without making use of the classifier form which is related to Mercer's condition. The method is illustrated on a two-spiral classification problem.

摘要

在本文中,我们描述了一种基于支持向量机(SVM)思想的单隐层多层感知器分类器的训练方法。通过在隐层的互连矩阵及其偏置向量上迭代最小化Vapnik-Chervonenkis(VC)维数的上界。输出权重根据支持向量法确定,但不使用与Mercer条件相关的分类器形式。该方法在双螺旋分类问题上得到了验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验