Suppr超能文献

具有低模型复杂度的神经动力学分类器。

Neurodynamical classifiers with low model complexity.

机构信息

Department of Electrical Engineering, Indian Institute of Technology, Delhi, India.

Department of Electrical Engineering (PEE), Graduate School of Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

出版信息

Neural Netw. 2020 Dec;132:405-415. doi: 10.1016/j.neunet.2020.08.013. Epub 2020 Aug 27.

Abstract

The recently proposed Minimal Complexity Machine (MCM) finds a hyperplane classifier by minimizing an upper bound on the Vapnik-Chervonenkis (VC) dimension. The VC dimension measures the capacity or model complexity of a learning machine. Vapnik's risk formula indicates that models with smaller VC dimension are expected to show improved generalization. On many benchmark datasets, the MCM generalizes better than SVMs and uses far fewer support vectors than the number used by SVMs. In this paper, we describe a neural network that converges to the MCM solution. We employ the MCM neurodynamical system as the final layer of a neural network architecture. Our approach also optimizes the weights of all layers in order to minimize the objective, which is a combination of a bound on the VC dimension and the classification error. We illustrate the use of this model for robust binary and multi-class classification. Numerical experiments on benchmark datasets from the UCI repository show that the proposed approach is scalable and accurate, and learns models with improved accuracies and fewer support vectors.

摘要

最近提出的最小复杂度机器(MCM)通过最小化 Vapnik-Chervonenkis(VC)维数的上界来找到超平面分类器。VC 维数衡量学习机器的容量或模型复杂度。Vapnik 的风险公式表明,具有较小 VC 维数的模型预计会表现出更好的泛化能力。在许多基准数据集上,MCM 的泛化能力优于 SVM,并且使用的支持向量数远远少于 SVM 使用的数量。在本文中,我们描述了一种可以收敛到 MCM 解的神经网络。我们将 MCM 神经动力学系统用作神经网络架构的最后一层。我们的方法还优化了所有层的权重,以最小化目标函数,该函数是 VC 维数和分类误差的组合。我们说明了该模型在稳健的二进制和多类分类中的应用。来自 UCI 存储库的基准数据集的数值实验表明,所提出的方法是可扩展的和准确的,并且可以学习具有改进准确性和更少支持向量的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验