Chen Liangyou, McKenna Thomas M, Reisner Andrew T, Gribok Andrei, Reifman Jaques
Bioinformatics Cell, Telemedicine and Advanced Technology Research Center (TATRC), Building 363 Miller Drive, US Army Medical Research and Materiel Command (USAMRMC), Frederick, MD 21702-5012, USA.
J Biomed Inform. 2008 Jun;41(3):469-78. doi: 10.1016/j.jbi.2007.12.002. Epub 2008 Jan 18.
We present a classifier for use as a decision assist tool to identify a hypovolemic state in trauma patients during helicopter transport to a hospital, when reliable acquisition of vital-sign data may be difficult. The decision tool uses basic vital-sign variables as input into linear classifiers, which are then combined into an ensemble classifier. The classifier identifies hypovolemic patients with an area under a receiver operating characteristic curve (AUC) of 0.76 (standard deviation 0.05, for 100 randomly-reselected patient subsets). The ensemble classifier is robust; classification performance degrades only slowly as variables are dropped, and the ensemble structure does not require identification of a set of variables for use as best-feature inputs into the classifier. The ensemble classifier consistently outperforms best-features-based linear classifiers (the classification AUC is greater, and the standard deviation is smaller, p<0.05). The simple computational requirements of ensemble classifiers will permit them to function in small fieldable devices for continuous monitoring of trauma patients.
我们提出了一种分类器,用作决策辅助工具,以在将创伤患者直升机转运至医院的过程中识别低血容量状态,此时可能难以可靠获取生命体征数据。该决策工具将基本生命体征变量用作线性分类器的输入,然后将这些线性分类器组合成一个集成分类器。该分类器识别低血容量患者的受试者工作特征曲线下面积(AUC)为0.76(标准差0.05,针对100个随机选择的患者子集)。该集成分类器具有鲁棒性;随着变量的剔除,分类性能仅缓慢下降,并且集成结构不需要识别一组变量作为分类器的最佳特征输入。该集成分类器始终优于基于最佳特征的线性分类器(分类AUC更大,标准差更小,p<0.05)。集成分类器简单的计算要求将使其能够在小型可部署设备中运行,以持续监测创伤患者。