Toy Jake, Warren Jonathan, Wilhelm Kelsey, Putnam Brant, Whitfield Denise, Gausche-Hill Marianne, Bosson Nichole, Donaldson Ross, Schlesinger Shira, Cheng Tabitha, Goolsby Craig
The Lundquist Institute, Department of Emergency Medicine Harbor-UCLA Medical Center Torrance California USA.
Los Angeles Emergency Medical Services Agency Santa Fe Springs California USA.
J Am Coll Emerg Physicians Open. 2024 Sep 4;5(5):e13251. doi: 10.1002/emp2.13251. eCollection 2024 Oct.
Artificial intelligence (AI) has transformative potential to support prehospital clinicians, emergency physicians, and trauma surgeons in acute traumatic injury care. This scoping review examines the literature evaluating AI models using prehospital features to support early traumatic injury care.
We conducted a systematic search in August 2023 of PubMed, Embase, and Web of Science. Two independent reviewers screened titles/abstracts, with a third reviewer for adjudication, followed by a full-text analysis. We included original research and conference presentations evaluating AI models-machine learning (ML), deep learning (DL), and natural language processing (NLP)-that used prehospital features or features available immediately upon emergency department arrival. Review articles were excluded. The same investigators extracted data and systematically categorized outcomes to ensure consistency and transparency. We calculated kappa for interrater reliability and descriptive statistics.
We identified 1050 unique publications, with 49 meeting inclusion criteria after title and abstract review (kappa 0.58) and full-text review. Publications increased annually from 2 in 2007 to 10 in 2022. Geographic analysis revealed a 61% focus on data from the United States. Studies were predominantly retrospective (88%), used local (45%) or national level (41%) data, focused on adults only (59%) or did not specify adults or pediatrics (27%), and 57% encompassed both blunt and penetrating injury mechanisms. The majority used machine learning (88%) alone or in conjunction with DL or NLP, and the top three algorithms used were support vector machine, logistic regression, and random forest. The most common study objectives were to predict the need for critical care and life-saving interventions (29%), assist in triage (22%), and predict survival (20%).
A small but growing body of literature described AI models based on prehospital features that may support decisions made by dispatchers, Emergency Medical Services clinicians, and trauma teams in early traumatic injury care.
人工智能(AI)在支持院前临床医生、急诊医生和创伤外科医生进行急性创伤护理方面具有变革潜力。本范围综述研究了评估使用院前特征支持早期创伤护理的人工智能模型的文献。
我们于2023年8月在PubMed、Embase和科学网进行了系统检索。两名独立评审员筛选标题/摘要,第三名评审员进行裁决,随后进行全文分析。我们纳入了评估人工智能模型——机器学习(ML)、深度学习(DL)和自然语言处理(NLP)——的原始研究和会议报告,这些模型使用了院前特征或急诊科到达后立即可用的特征。综述文章被排除。相同的研究人员提取数据并对结果进行系统分类,以确保一致性和透明度。我们计算了评分者间信度的kappa值和描述性统计量。
我们识别出1050篇独特的出版物,经过标题和摘要评审(kappa值为0.58)以及全文评审后,有49篇符合纳入标准。出版物数量从2007年的2篇逐年增加到2022年的10篇。地理分析显示,61%的研究聚焦于来自美国的数据。研究主要为回顾性研究(88%),使用本地(45%)或国家层面(41%)的数据,仅关注成年人(59%)或未明确说明是成年人还是儿科患者(27%),57%的研究涵盖钝性和穿透性损伤机制。大多数研究单独使用机器学习(88%)或与深度学习或自然语言处理结合使用,使用最多的三种算法是支持向量机、逻辑回归和随机森林。最常见的研究目标是预测重症监护和救生干预的需求(29%)、协助分诊(22%)以及预测生存情况(20%)。
一小部分但数量不断增加的文献描述了基于院前特征的人工智能模型,这些模型可能支持调度员、紧急医疗服务临床医生和创伤团队在早期创伤护理中做出的决策。