Suppr超能文献

Fuzzy lattice neural network (FLNN): a hybrid model for learning.

作者信息

Petridis V, Kaburlasos V G

机构信息

Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, GR-54006 Thessaloniki, Greece.

出版信息

IEEE Trans Neural Netw. 1998;9(5):877-90. doi: 10.1109/72.712161.

Abstract

This paper proposes two hierarchical schemes for learning, one for clustering and the other for classification problems. Both schemes can be implemented on a fuzzy lattice neural network (FLNN) architecture, to be introduced herein. The corresponding two learning models draw on adaptive resonance theory (ART) and min-max neurocomputing principles but their application domain is a mathematical lattice. Therefore they can handle more general types of data in addition to N-dimensional vectors. The FLNN neural model stems from a cross-fertilization of lattice theory and fuzzy set theory. Hence a novel theoretical foundation is introduced in this paper, that is the framework of fuzzy lattices or FL-framework, based on the concepts fuzzy lattice and inclusion measure. Sufficient conditions for the existence of an inclusion measure in a mathematical lattice are shown. The performance of the two FLNN schemes, that is for clustering and for classification, compares quite well with other methods and it is demonstrated by examples on various data sets including several benchmark data sets.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验