Teboul S, Blanc-Féraud L, Aubert G, Barlaud M
Lab. Inf. Signaux et Syst. de Sophia Antipolis, Valbonne, France.
IEEE Trans Image Process. 1998;7(3):387-97. doi: 10.1109/83.661189.
This paper deals with edge-preserving regularization for inverse problems in image processing. We first present a synthesis of the main results we have obtained in edge-preserving regularization by using a variational approach. We recall the model involving regularizing functions phi and we analyze the geometry-driven diffusion process of this model in the three-dimensional (3-D) case. Then a half-quadratic theorem is used to give a very simple reconstruction algorithm. After a critical analysis of this model, we propose another functional to minimize for edge-preserving reconstruction purposes. It results in solving two coupled partial differential equations (PDEs): one processes the intensity, the other the edges. We study the relationship with similar PDE systems in particular with the functional proposed by Ambrosio-Tortorelli in order to approach the Mumford-Shah functional developed in the segmentation application. Experimental results on synthetic and real images are presented.
本文探讨图像处理中逆问题的保边缘正则化。我们首先通过变分方法对保边缘正则化中获得的主要结果进行综合阐述。我们回顾涉及正则化函数phi的模型,并在三维(3-D)情况下分析该模型的几何驱动扩散过程。然后使用半二次定理给出一种非常简单的重建算法。在对该模型进行批判性分析之后,我们提出另一个用于保边缘重建的最小化泛函。这导致求解两个耦合的偏微分方程(PDE):一个处理强度,另一个处理边缘。我们特别研究与类似PDE系统的关系,尤其是与Ambrosio-Tortorelli提出的泛函的关系,以便逼近分割应用中开发的Mumford-Shah泛函。给出了合成图像和真实图像的实验结果。