Suppr超能文献

双标图作为潜在类别模型中局部相依性的诊断工具。一项医学应用。

The Biplot as a diagnostic tool of local dependence in latent class models. A medical application.

作者信息

Sepúlveda R, Vicente-Villardón J L, Galindo M P

机构信息

Department of Statistics, University of Salamanca, Salamanca, Spain.

出版信息

Stat Med. 2008 May 20;27(11):1855-69. doi: 10.1002/sim.3194.

Abstract

Latent class models (LCMs) can be used to assess diagnostic test performance when no reference test (a gold standard) is available, considering two latent classes representing disease or non-disease status. One of the basic assumptions in such models is that of local or conditional independence: all indicator variables (tests) are statistically independent within each latent class. However, in practice this assumption is often violated; hence, the two-LCM fits the data poorly. In this paper, we propose the use of Biplot methods to identify the conditional dependence between pairs of manifest variables within each latent class. Additionally, we propose incorporating such dependence in the corresponding latent class using the log-linear formulation of the model.

摘要

当没有参考测试(金标准)可用时,潜在类别模型(LCMs)可用于评估诊断测试性能,其中考虑代表疾病或非疾病状态的两个潜在类别。此类模型的基本假设之一是局部或条件独立性:所有指标变量(测试)在每个潜在类别内均统计独立。然而,在实际中这一假设常常被违反;因此,双潜在类别模型对数据的拟合效果不佳。在本文中,我们建议使用双标图方法来识别每个潜在类别内一对显变量之间的条件依赖性。此外,我们建议使用模型的对数线性公式将这种依赖性纳入相应的潜在类别中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验