Suppr超能文献

诊断准确性的潜在变量建模

Latent variable modeling of diagnostic accuracy.

作者信息

Yang I, Becker M P

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

出版信息

Biometrics. 1997 Sep;53(3):948-58.

PMID:9290225
Abstract

Latent class analysis has been applied in medical research to assessing the sensitivity and specificity of diagnostic tests/diagnosticians. In these applications, a dichotomous latent variable corresponding to the unobserved true disease status of the patients is assumed. Associations among multiple diagnostic tests are attributed to the unobserved heterogeneity induced by the latent variable, and inferences for the sensitivities and specificities of the diagnostic tests are made possible even though the true disease status is unknown. However, a shortcoming of this approach to analyses of diagnostic tests is that the standard assumption of conditional independence among the diagnostic tests given a latent class is contraindicated by the data in some applications. In the present paper, models incorporating dependence among the diagnostic tests given a latent class are proposed. The models are parameterized so that the sensitivities and specificities of the diagnostic tests are simple functions of model parameters, and the usual latent class model obtains as a special case. Marginal models are used to account for the dependencies within each latent class. An accelerated EM gradient algorithm is demonstrated to obtain maximum likelihood estimates of the parameters of interest, as well as estimates of the precision of the estimates.

摘要

潜在类别分析已应用于医学研究中,用于评估诊断测试/诊断医师的敏感性和特异性。在这些应用中,假定存在一个与患者未观察到的真实疾病状态相对应的二分潜在变量。多个诊断测试之间的关联归因于由潜在变量引起的未观察到的异质性,并且即使真实疾病状态未知,也能够对诊断测试的敏感性和特异性进行推断。然而,这种诊断测试分析方法的一个缺点是,在某些应用中,数据表明给定潜在类别的诊断测试之间条件独立的标准假设并不适用。在本文中,提出了包含给定潜在类别的诊断测试之间依赖性的模型。对模型进行参数化,使得诊断测试的敏感性和特异性是模型参数的简单函数,并且通常的潜在类别模型作为特殊情况得到。边际模型用于解释每个潜在类别中的依赖性。证明了一种加速的期望最大化(EM)梯度算法可用于获得感兴趣参数的最大似然估计以及估计精度的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验