Michalak Artur, Mitoraj Mariusz, Ziegler Tom
Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Cracow, Poland.
J Phys Chem A. 2008 Mar 6;112(9):1933-9. doi: 10.1021/jp075460u. Epub 2008 Feb 12.
Two sets of orbitals are derived, directly connected to the Nalewajski-Mrozek valence and bond-multiplicity indices: Localized Orbitals from the Bond-Multiplicity Operator (LOBO) and the Natural Orbitals for Chemical Valence (NOCV). LOBO are defined as the eigenvectors of the bond-multiplicity operator. The expectation value of this operator is the corresponding bond index. Thus, the approach presented here allows for a discussion of localized orbitals and bond multiplicity within one common framework of chemical valence theory. Another set of orbitals discussed in the present work, NOCV, are defined as eigenvectors of the overall chemical valence operator. This set of orbitals can be especially useful for a description of bonding in transition metal complexes, as it allows for separation of the deformation density contributions originating from the ligand --> metal donation and metal --> ligand back-donation.
推导出了两组轨道,它们直接与纳莱瓦伊斯基-姆罗泽克价态和键多重性指数相关:来自键多重性算符的定域轨道(LOBO)和化学价态自然轨道(NOCV)。LOBO被定义为键多重性算符的本征向量。该算符的期望值就是相应的键指数。因此,这里提出的方法允许在化学价理论的一个共同框架内讨论定域轨道和键多重性。本工作中讨论的另一组轨道,即NOCV,被定义为整体化学价算符的本征向量。这组轨道对于描述过渡金属配合物中的键合特别有用,因为它允许分离出源于配体→金属给予和金属→配体反馈给予的变形密度贡献。