Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R.Ingardena 3, 30-060 Cracow, Poland.
Inorg Chem. 2010 Jan 18;49(2):578-82. doi: 10.1021/ic901736n.
The bonding between phosphorus ligands X = PCl(3), PF(3), P(OCH(3))(3), PH(3), PH(2)CH(3), PH(CH(3))(2), P(CH(3))(3) and the metal-containing fragments [Ni(CO)(3)], [Mo(CO)(5)], and [Fe(CO)(4)] have been studied by Natural Orbitals for Chemical Valence (NOCV). The main attention was paid to estimation of donor (Deltaq(d)) /acceptor (Deltaq(bd)) properties of X on the basis of NOCV's charge criterion. All ligands X are found to be both sigma-donors and pi-acceptors. The best sigma-donor and pi-acceptor ligands are P(CH(3))(3) and PY(3) (Y horizontal line F,Cl), respectively, in both the nickel and molybdenum complexes. The NOCV contributions to deformation density show that the sigma-component corresponds to the donation from the lone electron pair of phosphorus, enhanced further by a transfer from ancillary halogen atoms (in the case of PCl(3) and PF(3)) to a bonding region and to oxygen atoms of carbonyls. The pi-bonding is due to the electron transfer from the metal into the empty orbital of X, mostly exhibiting phosphorus 3p character. It was shown that within the molecular orbital framework, the trend for the donor/acceptor strength of X can be explained by the difference in the orbital energies of the orbitals involved in the donation/back-donation. Regarding the influence of the metal fragment on the donor/acceptor properties of X, it was demonstrated that the relative order of the phosphorus ligands remains in general intact. The only exception is the P(OCH(3))(3) ligand changing its position in molybdenum series compared to the nickel complexes. However, a change in the metal-containing fragment can influence the magnitude of electron transfer. For the set of phosphorus ligands studied here the effect is much less pronounced than for other ligands studied previously.
磷配体 X = PCl(3)、PF(3)、P(OCH(3))(3)、PH(3)、PH(2)CH(3)、PH(CH(3))(2)、P(CH(3))(3) 与金属含片段 [Ni(CO)(3)]、[Mo(CO)(5)] 和 [Fe(CO)(4)] 的键合已通过自然轨道化学价 (NOCV) 进行了研究。主要关注的是基于 NOCV 的电荷标准,估计 X 的供体 (Deltaq(d))/受体 (Deltaq(bd)) 性质。所有配体 X 都被发现既是 sigma-供体又是 pi-受体。在镍和钼配合物中,最好的 sigma-供体和 pi-受体配体分别是 P(CH(3))(3) 和 PY(3)(Y 为 F、Cl)。NOCV 对变形密度的贡献表明,sigma 分量对应于磷孤对电子的捐赠,进一步增强了来自辅助卤素原子 (对于 PCl(3) 和 PF(3)) 到键合区域和羰基氧原子的转移。pi 键合是由于电子从金属转移到 X 的空轨道,主要表现为磷 3p 特征。结果表明,在分子轨道框架内,可以用参与捐赠/回供的轨道的轨道能差来解释 X 的供体/受体强度趋势。关于金属片段对 X 的供体/受体性质的影响,证明了磷配体的相对顺序通常保持不变。唯一的例外是 P(OCH(3))(3)配体在钼系列中与镍配合物相比其位置发生了变化。然而,金属含片段的变化会影响电子转移的大小。对于研究的磷配体组,其影响远小于以前研究的其他配体。