Palmer K F, Williams M Z, Budde B A
Appl Opt. 1998 May 1;37(13):2660-73. doi: 10.1364/ao.37.002660.
We describe a new, multiply subtractive Kramers-Kronig (MSKK)method to find the optical constants of a material from a singletransmittance or reflectance spectrum covering a small frequencydomain. The MSKK method incorporates independent measurements ofn and k at one or more reference wave-numbervalues to minimize errors due to extrapolations of the data. Anunexpected connection between the MSKK equations and the interpolationtheory allows us to derive the equations from an interpolationtheorem. We found that the locations of the reference points affectthe accuracy of the values determined for the optical constants andthat the optimal spacing of N reference data points isrelated to the zeros of a suitably transformed Chebychev polynomial oforder N. We discuss our efforts to optimize both the numberand the spacing of these reference points and apply our method to sometest spectra.
我们描述了一种新的多重减法克喇末-克朗尼格(MSKK)方法,用于从覆盖小频率范围的单个透射率或反射率光谱中求出材料的光学常数。MSKK方法结合了在一个或多个参考波数值处对n和k的独立测量,以最小化因数据外推而产生的误差。MSKK方程与插值理论之间的意外联系使我们能够从一个插值定理推导出这些方程。我们发现参考点的位置会影响所确定的光学常数的值的准确性,并且N个参考数据点的最佳间距与适当变换的N阶切比雪夫多项式的零点有关。我们讨论了优化这些参考点的数量和间距的努力,并将我们的方法应用于一些测试光谱。